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REQUEST FOR A SPECIAL PROJECT 2025–2027 
 

MEMBER STATE: Portugal 

Principal Investigator1: 
Ana Oliveira 

Affiliation: 
CoLAB +ATLANTIC 

Address: IPL, Rua do Conhecimento no. 4, Peniche, Portugal 

Other researchers: 

Bruno Marques, Caio Fonteles, Fabíola Silva, Inês Girão, João Paixão, 
Manvel Khudinyan, Maria Castro, Rita Cunha 

Project Title: 

ML4EUcities – Machine Learn for European cities 
To make changes to an existing project please submit an amended version of the original form.) 

 

Computer resources required for project year: 2025 2026 2027 

High Performance Computing Facility [SBU]    

Accumulated data storage (total archive volume)2 [GB]    

 

EWC resources required for project year: 2025 2026 2027 

Number of vCPUs [#] 35 35 35 

Total memory [GB] 350 350 350 

Storage [GB] 10000 15000 25000 

Number of vGPUs3 [#] 2 2 2 

Continue overleaf. 

 
1 The Principal Investigator will act as contact person for this Special Project and, in particular, will be asked to register 

the project, provide annual progress reports of the project’s activities, etc. 
2 These figures refer to data archived in ECFS and MARS. If e.g. you archive x GB in year one and y GB in year two and 

don’t delete anything you need to request x + y GB for the second project year etc. 
3The number of vGPU is referred to the equivalent number of virtualized vGPUs with 8GB memory. 

 

If this is a continuation of an existing project, please 
state the computer project account assigned previously. 

SP ………….. 

Starting year:     (A project can have a duration of up to 3 years, 

agreed at the beginning of the project.) 
2025 

Would you accept support for 1 year only, if necessary? YES       NO  
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Principal Investigator: 
Ana Oliveira 

Project Title: 
ML4EUcities - Machine Learning for European cities 

Extended abstract 

Introduction 
As climate change prospects point towards the pressing need for local adaptation strategies (IPCC, 2022), 
exposure to extreme weather events becomes one of the most important aspects in determining our 
society’s resilience in the future (Sagan et al., 2022; UNDRR, 2023). Globally, we are already experiencing 
changing patterns of exposure to certain types of extremes (e.g., wildfires in high latitudes, droughts in 
midlatitudes, flash floods in riverine and coastal areas) (IPCC, 2022; Perkins et al, 2020); and, at the European 
level, recent historical weather measurements are already showing a changing climate, where heatwaves 
(HW) become longer, more frequent and intense, while cold waves (CW) show only minor or non-significant 
changes (EEA, 2018; Hooyberghs et al., 2019; C3S, 2022). This amplitude increase between the temperature 
extremes is a major challenge to our strongly urbanised (UN-HABITAT, 2022) but steadily ageing society 
(EUROSTAT, 2020), in several aspects: from excess mortality and hospital admissions in the most vulnerable 
population segments, to asymmetries in household’s energy poverty versus unmet peak electricity demand 
for indoor acclimatisation (Ebi et al, 2021; WHO, 2021; ; Ballester et al., 2023; ), both the health and energy 
sectors are deeply affected by weather conditions, particularly air and land surface temperatures which are, 
at the local level, strongly influenced by the energy exchanges between the lower atmosphere and our deeply 
artificialized urban surfaces - and is aspect is of utmost importance while measuring and analysing the 
specificities of what is our urban climate (Oke, 1983, Oke, 2017). 
 

Within our cities, by changing the overall surface albedo through the introduction of darker and more energy 
absorbing materials while reducing natural vegetation - thermal properties changes - as well as through the 
introduction of ‘urban canyons’ - aerodynamic changes - our cities’ trap more radiation received from the 
sun (during the day) compared to the countryside  Oke, 2017). At the urban canopy layer level (UCL, i.e., the 
air volume beneath the average height of the buildings) this excess heat storage at the surface is later 
released back to the atmosphere as ‘sensible heat flux’ producing a positive urban ‘anomaly’, the so-called 
the Urban Heat Island (UHI) effect. Described since the last century, the UHI is one of the greatest by-products 
of the anthropogenic-induced changes over the landscape, by interfering with the underlying thermodynamic 
physical processes which can be quantified through the daily cycle of the Urban Energy Balance (UEB) 
components, which can be inferred from Earth Observation imagery (Bastiaanssen et al., 1997; Parlow, 2003; 
Zhou et al., 2019; Parlow, 2021). Hence, background synoptic/regional weather conditions are effectively 
modulated within our cities, which in turn has a mensurable impact on the accuracy of estimating short term 
and long-term temperature-related risks. And, from a risk assessment and response standpoint, this means 
that the level of detail and precision that we offer when mapping urban weather and climate-induced hazards 
is of utmost importance to reliably prioritise, in space and time, preventive and early warning actions, as well 
as when testing the alternative climate adaptation measures, something not currently offered in what 
concerns operational weather forecasting systems (Baklanov at al., 2018;  Grimmond, 2020). 
 
Problem Statement 
Considering these overarching aspects, it is well established that there are sufficient societal drivers, i.e., an 
existing need, for advancing the level of detail and precision of the air and land surface temperature 
predictions by accounting for the daily cycle of the UHI effect, particularly to (1) anticipate the 
neighbourhoods most exposed to air temperature extremes, in the short-term, (2) simulate the 
cooling/heating effect of alternative urban development pathways in the future climate change scenarios, 
and (3) quantify the sensitivity of the sectoral impacts to the temperature extremes. In this regard, the Digital 
Twin City (DTC) concept, comes forth as an integrated user-driven solution towards situational awareness 
goals, by promoting the symbiose between in-situ sensors (connected in real-time via internet-of-things (IoT) 
technologies), remotely sensed data and Earth Observation (EO) imagery through more efficient data-driven 
impact prediction approaches - notoriously Artificial Intelligence (AI) and Machine Learning (ML). However, 
there is limited access to air temperature or land surface data in high-resolution (i.e., at a sub-kilometric 
scale) due to a lack of urban-resolved observational data (i.e., most cities do not have proper mesoscale 
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weather networks installed, and the temporal scarcity of high-resolution satellite thermal observation 
acquisitions. As described in (Oke et al., 2017), there are four main methods to obtain city-level UHI data: (i) 
numerical and physical models; (ii) field observations; (iii) remote sensing/satellite observations; and (iv) 
empirical models. The same author highlights why options (i) to (iii) have serious constraints for the final 
users, as a stand-alone tool:  

• firstly, numerical and physical models provide quasi-controlled experiments, which are accurate and 
very flexible to test scenarios, but their usage is typically restricted to academic research, i.e., not 
available for urban managers and decision makers (Oke et al., 2017), due to the heavy computational 
demand and expertise required to run them (let alone to put them into operational forecast); 

• secondly, air temperature measurements are easy to interpret, even by non-specialists - these depict 
air temperature observations as discrete values in space (i.e., data points) - but high density weather 
networks are not available in most cities (Meier et al., 2015; Oke et al., 2017); while, some studies 
have been using citizen acquired data to fill in this need, this option implies proper handling of its 
quality limitations of this data, and is subject to non-homogeneous spatial densities (e.g., excluding 
outliers and correcting systematic positive bias) (Napoly et al., 2018; Nipen et al., 2020);  

• and thirdly, while there have been many EO missions encompassing optical and thermal payloads 
(e.g., Landsat, Sentinel 2 and 3, MODIS, METEOSAT), their data is strongly dependent on the spatial 
versus temporal resolution nexus and atmospheric column visibility (optical depth, cloud coverage); 
for example, geostationary satellites provide hourly or sub-hourly data, which allows to assess the 
full daily cycle of the UHI, but lack the metric resolution required for urban applications, while sun-
synchronous satellites offer single shots at a specific time of the day only, in some cases having 
several days between revisits.  

 
Hence, when considering these methods separately, they fail to offer end-users an effective, cost-efficient, 
and easily interpretable data supply service tackling urban climate-dependent issues (Oke at al., 2017). This 
lack of appeal hinders their adoption by local communities and private entities interested in understanding 
the impacts of Urban Heat Islands (UHI) on spatial planning, public health, or energy management. 
Conversely, by employing Machine Learning and Artificial Intelligence algorithms to multidimensional 
collocated EO, numerical modelling and in-situ observations data, we can generate spatio-temporal data 
fusion models to predict downscaled synthetic versions of the key Essential Climate Variables (ECVs) 
describing the UHI effect. In doing so, these methods successfully overcome the previously mentioned 
limitations, meeting sector-specific continuity and resolution requirements, and enabling the generalisation 
of results elsewhere, at a much lower operational cost. 
 
Scientific Plan 

ML4EUcities aims to pioneer the development of Machine Learning (ML) and Artificial Intelligence (AI) 

models designed to downscale air and land surface temperature predictions in urban areas by a factor of at 

least ten. This initiative serves as a preliminary step towards the implementation of cost-effective Integrated 

Urban Climate and Weather components into local Digital Twin Systems. By leveraging crowdsourced data 

from the citizens, earth observation and weather forecasting models, we aim to offer spatio-temporal data 

fusion models that can solve the unmet need for a low-cost, efficient, and scalable Urban Climate prediction 

system. To achieve this, ML4EUcities aims to tailor its solution to the requirements of local early warning 

systems, and as a tool for evaluating climate adaptation measures, namely the impact of green 

infrastructures on the Urban Heat Island effect. ML4EUcities will provide a coupled ML-based near-surface 

Air Temperature (henceforth, T2m) and Land Surface Temperature (LST) downscaling system targeting 

several cities in Europe, proving the concept’s reliability and scalability to further urban regions.  

 

This goal is only attainable by using large sets of historical data as the target response variables, containing 
sufficient observations to depict the full statistical distribution of the T2m and LST variables, namely the 
extreme values of the time series. By training several AI/ML data fusion techniques, ML4EUcities will 
downscale Numerical Weather Predictions (NWP) of air temperature forecasts and spaceborne satellite-
derived LST observations into a sub-kilometric (between 100 and 200m) grid of temporally-resolved T2m and 
LST predictions, using quality controlled weather data acquired consistently through the networks of citizen-
owned stations, as well as high resolution spaceborne thermal imagery. To achieve this, ML4EUcities will 
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leverage the framework from Lowry (1977) which states that a given weather element is the result of: (i) the 
‘background’ regional climate (e.g., Mediterranean Climate), (ii) the effects of local landscape (e.g., 
topography, coastal proximity), and (iii) the effects of local urbanisation (e.g., impermeabilization, 
compactness). In addition, ML4EUcities will also consider the well-known concept of the UEB which allows 
to tie together the UHI and the SUHI, considering these diverse types of source data:  

• the substantial number of existing citizen-owned weather stations across the main European (and 
global) metropolitan areas, continuously measuring our cities’ temperatures and humidity - 
particularly, hundreds of NetAtmo and Lonobox weather stations are available in Denmark’s 
metropolitan areas; these are also readily available in many urban regions over Europe, as well as 
globally, ensuring replicability of the modelling approaches;  

• the comprehensive database of EO imagery depicting the most important determinants of our cities’ 
UEB - while optical imagery is the input for accounting land cover classes, surface properties (e.g., 
albedo, emissivity, which are needed to compute the urban surface heat flux components), the 
thermal imagery is of utmost important also to verify the UEB and the UHI of the urban surfaces, the 
so-called SUHI which has a distinct daily cycle but is deeply coupled with the atmospheric conditions;  

• the reliable and temporarily resolved synoptic weather forecasts from the national and European 
services - these provide a historical database of gridded data that resolves the background weather 
conditions (i.e., those that arise at global and synoptic scales) with much greater temporal detail 
(hourly intervals, or less), and physically  

 
The overarching goal is to improve the level of detail offered by the existing urban climate (and weather) 
monitoring and prediction solutions, while keeping foreseen operational (i.e., computational) cost minimal, 
to make the case for a follow-up operational EO-based decision-support tool. Hence, ML4EUcities aims to 
provide higher resolution and temporally-resolved geospatial data to detect and characterise the UHI and 
SUHI in European cities, while ensuring that ML models respect the physical processes involved in the daily 
cycle of the UEB. In addition, ML4EUcities aims to highlight the added value of using downscaled geospatial 
information to anticipate climate risks arising from changing temperatures, particularly HW and CW, in 
support of knowledge-based decision making. The project goals can be further refined into specific goals (Sx), 
as follows:  

• S1. To develop, implement, and validate an improved version of the existing methods for 
downscaling T2m and LST based on ML methods for data fusion, accounting for the methodological 
opportunities and shortcomings highlighted in the previous section and ensure a reliable 
representation of extreme values, namely during heat a cold temperature extremes;  

• S2. To demonstrate the feasibility of blending EO remote sensing data with voluntary networks of in-
situ weather measurements (e.g., from NetAtmo, Lonobox) and NWP model outputs (e.g., 
HARMONIE-AROME), through ML techniques that successfully downscale these ECVs and depict the 
UHI and SUHI, providing insights into the spatio-temporal urban climate response during HW and CW 
events;  

• S3. To advance current scientific capacity to deliver knowledge-based operational tools to downscale 
operational weather predictions and simulate future climate change scenarios at a sub-kilometric 
(between 100 and 250m) spatial resolution, especially for early-warning and decision support during 
HW and CW occurrence, but also as a tool for assessing different urban planning climate adaptation 
measures. 

 
Justification for the Resources Required 
For each city, to attain spatio-temporal reliability of model performance, one is required to gather a 
significant amount of data. For instance, each FUA site usually covers an equivalent to 500.000 data points 
in space (at 0,002x0,002 grid resolution), which multiplies in time in an hourly basis. For comprehensive 
assessment, hourly data over multiple years is desirable. Hence, if considering 3-years-worth of data, up to 
13.140.000.000 data points are generated, per city. Accordingly, we have been facing several challenges 
regarding our computational capacity. Therefore, we require a high-performance computing cluster with at 
least 350 vCPUs, 350 GB of RAM, 25 TB of storage and 2 vGPUs, and the possibility to be able to develop 
advanced ML software. 
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Technical characteristics of the Code 
Data will be pre-processed using Python in Linux environment. Results will be validated against known 
benchmarks. The EDA shall be conducted in Python using Jupyter notebooks implementations, and standard 
libraries for climate and geospatial data processing. In terms of environment requirements, currently, the 
code is based on Python 3.9, runs on Linux, Ubuntu 20.04 or later, and the following libraries are required: 
• xarray==2023.10.1 
• scikit-learn==1.0.2 
• matplotlib==3.8.0 
• pandas==2.1.2 
• absl-py==2.0.0 
• geopandas==0.14.0 
• earthpy==0.9.4 
• tqdm==4.62.2 
• cdo==1.6.0 
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