

Exploring machine learning for data assimilation

Alban Farchi^{\dagger}, Patrick Laloyaux^{\ddagger}, Massimo Bonavita^{\ddagger}, and Marc Bocquet^{\dagger}

[†] CEREA, joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France [‡] ECMWF, Shinfield Park, Reading, United Kingdom

Thursday the 7th of May, 2020

Machine Learning seminar series

Contents

- Introduction: machine learning and data assimilation
- 2 The Quasi Geostrophic model
- 3 Idealised ML experiments with the QG model
- 4 Coupled DA-ML experiments with the QG model
- 5 Conclusions

Machine learning and optimisation

The emergence of machine learning

- Machine learning (ML) methods, and in particular deep learning (DL), have recently demonstrated impressive skills in reproducing complex spatiotemporal processes.
- ▶ The emergence of DL is largely due to:
 - ▶ the development of efficient and user-friendly libraries;
 - the increasing computational capabilities (and in particular the use of GPUs);
 - ▶ the access to (very) large datasets for training.

Machine learning and optimisation

Definition

Machine learning (ML) algorithms build a *mathematical model* based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.

In most cases, the goal is to *minimise a loss function* which expresses the discrepancy between the model prediction and the data:

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathbb{R}^{N_{\mathrm{p}}}}{\operatorname{arg\,min}} \sum_{i=1}^{N_{\mathrm{e}}} \left\| \mathbf{y}_i - \mathcal{M}(\mathbf{w}, \mathbf{x}_i) \right\|_2^2.$$
(1)

- The set $\{(\mathbf{x}_i, \mathbf{y}_i), i = 1 \dots N_e\}$ is the *training data*.
- The model \mathcal{M} depends on a set of parameters $\mathbf{w} \in \mathbb{R}^{N_{\mathrm{p}}}$.
- ▶ This approach is called *supervised learning*.
- ▶ In this sense, ML is not that far from *data assimilation* (DA).

Machine learning for numerical weather prediction

▶ Suppose that $\psi(t)$ is the trajectory of a physical system and define

$$\mathbf{x}_{i} = \psi \left(i \times \Delta t \right), \tag{2a}$$

$$\mathbf{y}_i = \psi\big((i+1) \times \Delta t\big). \tag{2b}$$

▶ Then the ML problem (1) consists in finding the best approximation of the map $\psi(t) \mapsto \psi(t + \Delta t)$, *i.e.*, the *resolvent* of $\psi(t)$, among all models

$$\left\{ \mathcal{M} : \mathbf{x} \mapsto \mathcal{M}(\mathbf{w}, \mathbf{x}), \ \mathbf{w} \in \mathbb{R}^{N_{\mathrm{p}}} \right\}.$$
(3)

Machine learning for numerical weather prediction

- Such approaches has been used to reconstruct the dynamics of low-order models (Lorenz 1963, Lorenz 1996, Kuramoto–Sivashinski) using different variants:
 - recurrent neural network [Park and Zhu, 1994];
 - reservoir computing [Pathak et al., 2017, 2018];
 - artificial neural networks [Dueben and Bauer, 2018].
- ▶ In these examples, the trajectory of the system is *perfectly known*.
- By contrast, observations in NWP are *sparse* and *noisy*: we need DA to recover the full state and to filter the noise!
- ► A rigorous formalism for this problem is that of a DA system with the model parameters w inside the control vector [Bocquet et al., 2019, 2020; Brajard et al., 2020].

The data assimilation problem

In this case, the cost function to minimise is

$$\mathcal{J}(\mathbf{w}, \mathbf{x}_{0}, \dots, \mathbf{x}_{N_{t}}) = \frac{1}{2} \sum_{k=0}^{N_{t}} \left\| \mathbf{y}_{k} - \mathcal{H}_{k}(\mathbf{x}_{k}) \right\|_{\mathbf{R}_{k}^{-1}}^{2} + \frac{1}{2} \sum_{k=0}^{N_{t}-1} \left\| \mathbf{x}_{k+1} - \mathcal{M}_{k}(\mathbf{w}, \mathbf{x}_{k}) \right\|_{\mathbf{Q}_{k}^{-1}}^{2}, \quad (4)$$

- $\mathbf{x}_k \in \mathbb{R}^{N_{\mathbf{x}}}$ is the *state* at time t_k ;
- $\mathbf{y}_k \in \mathbb{R}^{N_y}$ is the *observation vector* at time t_k ;
- ▶ $\mathbf{w} \in \mathbb{R}^{N_{p}}$ is the set of *parameters of the surrogate model* \mathcal{M}_{k} (*e.g.*, the weights of an artificial neural network);
- $N_{\rm t}$ is the length of the *assimilation* or *training window*.
- ► This resemble a typical weak-constraint 4D-Var cost function!
- ▶ If $\mathcal{H}_k = \text{Id}$ (full observations) and $\mathbf{R} = \mathbf{0}$ (no observation noise), we recover the standard ML cost function.

Joint minimisation of ${\bf w}$ and ${\bf x}$

- ► If possible, one can optimise for the parameters w and the trajectory x₀,..., x_{Nt} at the same time.
- ► This method has been used by [Bocquet at al., 2019] to reconstruct the dynamics of the Lorenz 1996 and Kuramoto–Sivashinski models, with as few parameters as possible.
- ► For realistic models, a joint minimisation is very difficult to implement:
 - the state space \mathbb{R}^{N_x} is already *high-dimensional*;
 - ▶ in order to get an accurate description of the dynamics, the *number* of *parameters* N_p and the length of the *training window* N_t must be large enough.

Coordinate descent: alternate ML and DA

- Because the parameters w and the trajectory x_0, \ldots, x_{N_t} are of different nature, it could be more efficient to use a *coordinate descent*, in which we alternate
 - ▶ a standard *DA* step: minimisation over $(\mathbf{x}_0, \ldots, \mathbf{x}_{N_t})$;
 - ▶ a standard *ML step*: minimisation over w.
- ▶ The algorithm is flexible: the DA and ML methods are independent.
- ▶ In this framework, the use of ML is more technical than conceptual.

Coordinate descent: alternate ML and DA

- ▶ This method has been used by [Bocquet et al., 2020] and [Brajard et al., 2020] to reconstruct the dynamics of the Lorenz 1996 and Lorenz 2005 (two-scale) models using *convolutional neural networks*.
- ▶ The extension to realistic models is not immediate:
 - the algorithm initialisation is critical;
 - ▶ the convergence is not guaranteed and we cannot afford many DA steps.
- Instead of constructing the model from scratch, we could build a *hybrid* model using an already existent model:

$$\mathcal{M}_{k}^{\mathsf{h}}:(\mathbf{w},\mathbf{x})\mapsto\mathcal{M}_{k}^{\mathsf{o}}(\mathbf{x})+\mathcal{M}_{k}^{\mathsf{ml}}(\mathbf{w},\mathbf{x}),\tag{5}$$

where \mathcal{M}° is the *original model* and \mathcal{M}^{ml} is the *trainable model*.

The hybrid model

In this case, the ML cost can be rewritten as

$$\mathcal{J}^{\mathsf{ml}}(\mathbf{w}, \mathbf{x}_{0}, \dots, \mathbf{x}_{N_{t}}) = \frac{1}{2} \sum_{k=0}^{N_{t}-1} \left\| \mathbf{x}_{k+1} - \mathcal{M}_{k}^{\mathsf{h}}(\mathbf{w}, \mathbf{x}_{k}) \right\|_{\mathbf{Q}_{k}^{-1}}^{2},$$
(6)
$$= \frac{1}{2} \sum_{k=0}^{N_{t}-1} \left\| \mathbf{x}_{k+1} - \mathcal{M}_{k}^{\mathsf{o}}(\mathbf{x}_{k}) - \mathcal{M}_{k}^{\mathsf{ml}}(\mathbf{w}, \mathbf{x}_{k}) \right\|_{\mathbf{Q}_{k}^{-1}}^{2}.$$
(7)

 \blacktriangleright Therefore, the trainable model \mathcal{M}^{ml} has to learn the relationship

$$\mathbf{x}_k \mapsto \mathbf{x}_{k+1} - \mathcal{M}_k^{\mathsf{o}}(\mathbf{x}_k) = \eta_{k+1},\tag{8}$$

in other words the *model error* associated to \mathcal{M}° .

Short summary

How to estimate the full model dynamics using perfect observations (full and noiseless)?

$$\mathcal{J}(\mathbf{w}) = \frac{1}{2} \sum_{k=0}^{N_{\mathrm{t}}-1} \left\| \mathbf{x}_{k+1} - \mathcal{M}_k^{\mathsf{ml}}(\mathbf{w}, \mathbf{x}_k) \right\|_{\mathbf{Q}_k^{-1}}^2.$$

How to estimate the full model dynamics using sparse and noisy observations?

$$\mathcal{J}(\mathbf{w}, \mathbf{x}_{\star}) = \frac{1}{2} \sum_{k=0}^{N_{t}} \left\| \mathbf{y}_{k} - \mathcal{H}_{k}(\mathbf{x}_{k}) \right\|_{\mathbf{R}_{k}^{-1}}^{2} + \frac{1}{2} \sum_{k=0}^{N_{t}-1} \left\| \mathbf{x}_{k+1} - \mathcal{M}_{k}^{\mathsf{ml}}(\mathbf{w}, \mathbf{x}_{k}) \right\|_{\mathbf{Q}_{k}^{-1}}^{2}.$$

How to estimate the model error using sparse and noisy observations?

$$\mathcal{J}(\mathbf{w}, \mathbf{x}_{\star}) = \frac{1}{2} \sum_{k=0}^{N_{\mathrm{t}}} \left\| \mathbf{y}_{k} - \mathcal{H}_{k}(\mathbf{x}_{k}) \right\|_{\mathbf{R}_{k}^{-1}}^{2} + \frac{1}{2} \sum_{k=0}^{N_{\mathrm{t}}-1} \left\| \mathbf{x}_{k+1} - \mathcal{M}_{k}^{\mathrm{o}}(\mathbf{x}_{k}) - \mathcal{M}_{k}^{\mathrm{ml}}(\mathbf{w}, \mathbf{x}_{k}) \right\|_{\mathbf{Q}_{k}^{-1}}^{2}.$$

Learning the model error

- We want to validate this approach using the framework developed at ECMWF (namely OOPS).
- ▶ The observations will be generated using the *QG model*:
 - ▶ a reasonably complex problem (2D, 2 layers, 1600 variables in total);
 - sufficiently small to perform extensive tests;
 - ▶ it has been used to validate the weak-constraint 4D-Var algorithm [Laloyaux et al., 2020].
- ▶ The DA step will be performed using the *strong-constraint 4D-Var* algorithm:
 - ▶ the original model \mathcal{M}° is to be determined (perturbed QG model);
 - ▶ the total training window will be divided into smaller sub-windows.
- ▶ The ML step will be performed with *standard ML tools*:
 - ▶ the trainable model \mathcal{M}^{ml} will be built with artificial neural networks;
 - ▶ the optimisation is left to TensorFlow 2.

Contents

Introduction: machine learning and data assimilation

The Quasi Geostrophic model

- Model description
- The perturbed QG model
- 3 Idealised ML experiments with the QG model
- 4 Coupled DA-ML experiments with the QG model

Conclusions

Brief model description

► The model expresses the conservation of potential vorticity q for two layers of constant potential temperature in the x - y plane (two-dimensional model):

$$\frac{\mathrm{d}q_1}{\mathrm{d}t} = \frac{\mathrm{d}q_2}{\mathrm{d}t} = 0. \tag{9}$$

▶ The potential vorticity q is related to the *stream function* ψ by

$$q_1 = \Delta \psi_1 - F_1(\psi_1 - \psi_2) + \beta y,$$
(10a)

$$q_2 = \Delta \psi_2 - F_2(\psi_2 - \psi_1) + \beta y + R(x, y).$$
(10b)

- ▶ The domain is *periodic* in the x direction and *fixed boundary conditions* are used for q in the y direction. We use a discretisation of 40×20 points.
- ▶ The orography *R* is characterised by a Gaussian hill.

Alban Farchi

Exploring machine learning for data assimilation

Dynamical behaviour

[show animation here]

- ▶ We have first checked that the model is stable and realistic for very long runs.
- ▶ The evolution of ψ is characterised by a *slow westward motion*, with a mean period around 16 d.
- The model is *chaotic*, with a doubling time of errors around $250 \,\mathrm{h}$.
- \blacktriangleright For comparison, the doubling time of errors in the IFS is around 2 d.

Data assimilation with the QG model

- ▶ We use the DA setup of [Laloyaux et al., 2020].
- The *control vector* is ψ : the state dimension is $N_x = 40 \times 20 \times 2 = 1600$.
- Observations are available every $\Delta t = 2 \text{ h}$ at $N_y = 50$ random locations.
- > The observation standard deviation is set to $\sigma = 0.1$, about 2% of the model variability;
- ▶ The 4D-Var algorithm is used with consecutive windows of $\Delta T = 1$ d.

The perturbed QG model: definition

- ▶ We add a model error on top of the exact QG model *M*^t to create the original model *M*^o. The goal will be to recover the exact model *M*^t.
- In the weak-constraint 4D-Var test series [Laloyaux et al., 2020], the model error is a random additive noise, with a given covariance, and constant in time.
- However, such model noise makes the model unstable in the long term: we need another approach.
- ▶ For \mathcal{M}° we use the QG model with *different parameters* (top and bottom layer depth, orography) and *different integration time step*.

$Exact \ QG \ model \ \mathcal{M}^t$	Perturbed QG model \mathcal{M}^{o}
$\begin{aligned} R_{\text{top}} &= 6000 \text{m} \\ R_{\text{bot}} &= 4000 \text{m} \\ \delta t &= 10 \text{min} \end{aligned}$	$\begin{aligned} R_{top} &= 5750 \text{ m} \\ R_{bot} &= 4250 \text{ m} \\ \delta t &= 20 \text{ min} \end{aligned}$
•	

The perturbed QG model: forecast skill

▶ We compute the *forecast skill* (FS) of \mathcal{M}° compared to \mathcal{M}^{t} :

$$FS(t) = RMSE\left(\mathcal{M}_{0 \to t}^{\mathsf{t}}(\mathbf{x}_{0}), \mathcal{M}_{0 \to t}^{\mathsf{o}}(\mathbf{x}_{0})\right)$$
(11)

- The quantity is averaged over a large number (100) of initial conditions x₀ to get a reliable estimate.
- ▶ NB: learning the model error starting from persistence (*i.e.*, when $M^{\circ} = Id$) is roughly equivalent to learning the full dynamics!

The perturbed QG model: model error

[show animation here]

- ▶ The resulting model error is dominated by the *orography* error.
- Compared to the error with persistence, it is *large scale* and it has a *slow* time evolution.

Contents

Introduction: machine learning and data assimilation

2 The Quasi Geostrophic model

Idealised ML experiments with the QG model

- Making the database
- Machine learning models and training
- First machine learning experiment
- Systematic machine learning experiments

Coupled DA-ML experiments with the QG model

Conclusions

Idealised ML experiments

- Before starting the experiments with sparse and noisy observations, we want to evaluate the potential of ML.
 - ▶ What kind of model should be used? How should they be trained?
 - What level of improvement can we expect?
- ▶ Therefore, we first try to learn the model error using *perfect observations* (*i.e.*, full and noiseless).

Database creation

We first make a long run with the exact QG model M^t and we extract ψ at regular intervals:

$$\psi_k = \psi(k \times \Delta T), \quad k = 0, \dots, N_t.$$
 (12)

 \blacktriangleright Then, we compute the model error η for the perturbed QG model $\mathcal{M}^{\rm o}$ as

$$\eta_{k+1} = \psi_{k+1} - \mathcal{M}^{\circ}(\psi_k), \quad k = 0, \dots, N_{t} - 1.$$
 (13)

Finally, the database for ML is

$$\left\{ \left(\psi_{k-1}, \eta_k\right), \ k = 1, \dots, N_{\rm t} \right\}.$$
(14)

- ▶ The process is repeated 18 times:
 - one trajectory is used for *training*;
 - one trajectory is used for validation (when to stop the training);
 - ▶ 16 trajectories are used for *testing*.
- This experiment has two hyperparameters:
 - the sampling period $\Delta T \rightarrow 1, 2, 4, 8 d$;
 - the size of the database $N_t \rightarrow 16, 32, 64, \ldots, 1024$.

Machine learning models

- The trainable model \mathcal{M}^{ml} is built using artificial neural networks.
- ▶ Two classes of architectures are considered:
 - sequential models with only *dense* or *fully-connected* layers;
 - sequential models with *convolutional* layers followed by *dense* layers.

Machine learning models

- ▶ The models are implemented using TensorFlow (only a few lines of python code).
- ▶ For each experiment, 24 models are trained, with variation of
 - the number of layers $\rightarrow 1, \ldots, 4$;
 - the *number of nodes* or *filters* per layer \rightarrow 4, 8, 16;
 - ▶ the activation function \rightarrow linear or relu $x \mapsto \frac{1}{2}(x+|x|)$.
- ▶ The models are designed to use as few parameters as possible (N_p is between 10^4 and 10^5) because the problem is small ($N_x = 1600$).
- Regularisation is empirically unnecessary in our experiments.

Model training

- ► The models are trained using *Adam*, a variant of the *stochastic gradient descent* implemented in TensorFlow.
- ▶ The model input / output are normalised to accelerate the convergence.
- ▶ The loss function is the *mean squared error* (MSE).
- The training consists of:
 - ▶ 10^3 epochs with an initial learning rate of 10^{-3} ;
 - ▶ 10^3 epochs with an initial learning rate of 10^{-4} (fine-tuning);
 - ▶ in each case, we keep the model with the lowest validation MSE.

Training example

- ▶ Trainable model \mathcal{M}^{ml} : 1 dense layer with 4 nodes, linear activation, 14 404 parameters in total.
- > The model learns about 92% of the model error variance.

Corrected forecast skill

▶ The trained model is included in the hybrid model $M^h = M^o + M^{ml}$ and tested in forecast condition:

$$FS(t) = RMSE\left(\mathcal{M}_{0 \to t}^{t}(\mathbf{x}_{0}), \mathcal{M}_{0 \to t}^{h}(\mathbf{x}_{0})\right)$$
(15)

- > The FS is averaged over 16 different initial conditions \mathbf{x}_0 to get a reliable estimate.
- ▶ The correction is still effective after a 10 d forecast!

- ▶ What are the results for the other models? Which are the best models?
- ▶ What happens if we change the sampling period ΔT or the size of the database $N_{\rm t}$?
- How does this compare to persistence?

Comparative forecast skill

- > There is a clear tendency: the more parameters, the lower the RMSE.
- \blacktriangleright The spread at 16 d is much larger than at 8 d.

How long must be the training trajectory?

RMSE at $8 \ \mathrm{d}$ for the best hybrid model \mathcal{M}^h

- At fixed sampling period ΔT , the 8 d forecast improves with the length of the training trajectory.
- \blacktriangleright Globally the RMSE improves as the sampling period ΔT is decreased, even though this means using more hybrid model cycles.

Which are the best models?

- ▶ Increasing the number of parameters (*e.g.*, the *number of nodes*) is a good strategy.
- ▶ The *number of layers* and *layer types* (dense or convolutional) has little impact.
- ▶ Nonlinear activation functions are more efficient for small databases or if the sampling period ΔT is long. This is related to the development of nonlinearity for longer model forecast.

What about longer forecast?

RMSE at $16 \ \mathrm{d}$ for the best hybrid model \mathcal{M}^{h}

- ▶ The hybrid model \mathcal{M}^{h} clearly improves upon the original model \mathcal{M}° .
- ▶ However, increasing the length of the training trajectory N_t or decreasing the sampling period ΔT does not improve the RMSE.

Comparison with persistence

- ▶ The training is easier when M° is the perturbed QG model than with persistence $(M^{\circ} = Id)$.
- With the perturbed QG model, the RMSE is globally better and much better for small databases.
- \blacktriangleright With persistence, decreasing the sampling period ΔT does not significantly improve the RMSE.

Summary

Best hybrid models, $\Delta T=1\,\mathrm{d}$ and $N_{\mathrm{t}}=1024$

Alban Farchi

Contents

- Introduction: machine learning and data assimilation
- 2 The Quasi Geostrophic model
- 3 Idealised ML experiments with the QG model
 - Coupled DA-ML experiments with the QG model
 - The data assimilation step
 - The machine learning step
 - Next steps

Coupled DA-ML experiments

- ▶ We are now ready to start the coupled DA-ML experiments.
- ▶ We first perform a single cycle: one DA step, followed by one ML step.
- ▶ We then evaluate our options.

The data assimilation step

- Observations are available every $\Delta t = 2 \text{ h}$ at $N_y = 50$ random locations.
- ► The data assimilation step is performed with the *strong-constraint 4D-Var* algorithm:
 - we use windows of $\Delta T = 1 \,\mathrm{d}$;
 - the algorithm uses the original (perturbed) QG model \mathcal{M}° ;
 - \blacktriangleright the observation standard deviation is set to $\sigma=0.1,$ about $2\,\%$ of the model variability;
 - ▶ the standard deviation of the background covariance matrix B is optimally tuned to yield the lowest analysis RMSE.

Database creation with data assimilation

We first make a long run with the exact QG model M^t and we extract ψ at regular intervals:

$$\psi_k^{\mathsf{t}} = \psi(k \times \Delta T), \quad k = 0, \dots, N_{\mathsf{t}}.$$
 (16)

► Then, for each window k, we generate the synthetic observations \mathbf{y}_k (with noise) and we use the 4D-Var algorithm (with \mathcal{M}°) to compute the analysis ψ_k^a and the analysis increment $\delta \psi_{k+1}^a$ as

$$\delta \psi_{k+1}^{\mathsf{a}} = \psi_{k+1}^{\mathsf{a}} - \mathcal{M}^{\mathsf{o}}(\psi_{k}^{\mathsf{a}}).$$
(17)

Finally, the database for ML is

$$\left\{ \left(\psi_{k-1}^{\mathfrak{a}}, \delta\psi_{k}^{\mathfrak{a}}\right), \ k = 1, \dots, N_{\mathfrak{t}} \right\}.$$
(18)

- ▶ The process is repeated 18 times:
 - one trajectory is used for training ;
 - one trajectory is used for validation (when to stop the training);
 - ▶ 16 trajectories are used for *testing*.

Data assimilation results

- \blacktriangleright We have successfully applied the method for 1032 consecutive assimilation windows.
- \blacktriangleright The analysis RMSE stabilises after about 5 windows: we drop the first 8 windows.
- ▶ The time-averaged analysis RMSE, averaged over the 18 trajectories, is about 0.25.

Machine learning models and training

- ▶ We can easily play with the *size of the database* by keeping only the first N_t elements.
- ▶ We can also play with the *sampling period* ΔT , for example by only keeping every other analysis state.
- ▶ We can now start the ML step with the *same models* and *same training method* as for the idealised experiments.

Training example

 $\Delta T = 2 d$ and $N_t = 128$ 20 training validation test 16 normalised MSE [%] 12 8 4 0 0 200 400 600 800 1000 number of epochs

- ▶ Trainable model \mathcal{M}^{ml} : 1 dense layer with 4 nodes, linear activation, 14 404 parameters in total.
- > The model learns about 87% of the *increments* variance.

Further model evaluation

- ▶ The primary goal is to learn the *model error* and not the analysis increments.
- ▶ For each of the 16 test trajectory, we compute the model error using the truth:

$$\eta_{k+1} = \psi_{k+1}^{t} - \mathcal{M}^{\circ}(\psi_{k}^{t}), \quad k = 0, \dots, N_{t} - 1.$$
(19)

 \blacktriangleright We use this ideal database to test the trained model \mathcal{M}^{ml} .

Further model evaluation

 $\Delta T=2\,\mathrm{d}$ and $N_\mathrm{t}=128$

- ► Trainable model \mathcal{M}^{ml} : 1 dense layer with 4 nodes, linear activation, 14 404 parameters in total.
- ▶ The model learns about 87% of the *increments* variance, but only 70% of the *model error* variance.

Corrected forecast skill

The correction is less effective than if trained with perfect observations (full and noiseless), but still quite good!

Next steps

- Confirm these results with other ML models.
- As for the idealised experiments, change the size of the database N_t and the sampling period ΔT .
- ► Use the hybrid model M^h for data assimilation and compare the results with other model error estimation methods, *e.g.*, weak-constraint 4D-Var.
 - ▶ We need to be able to perform forecasts *shorter* than the assimilation window ΔT .
 - An easy fix could be to assume a linear growth of the error in time.
 - Another option is to cycle the hybrid model *M*^h between consecutive sampling times.

Using the hybrid model for data assimilation

- ▶ Suppose that we want to predict the model error for a 1 d integration using a sampling period of 2 d.
- ▶ The *effective model* M^e to train is

$$\mathcal{M}^{e}: (\mathbf{w}, \mathbf{x}) \mapsto \mathcal{M}^{h} \big(\mathbf{w}, \mathcal{M}^{h}(\mathbf{w}, \mathbf{x}) \big),$$
(20)

where \mathcal{M}^{h} is the hybrid model:

$$\mathcal{M}^{h}: (\mathbf{w}, \mathbf{x}) \mapsto \mathcal{M}^{o}(\mathbf{x}) + \mathcal{M}^{ml}(\mathbf{w}, \mathbf{x}).$$
(21)

▶ For the ML step, we need the gradient of \mathcal{M}^{e} with respect to \mathbf{w} :

$$\frac{\partial \mathcal{M}^{\mathsf{e}}}{\partial \mathbf{w}} = \frac{\partial \mathcal{M}^{\mathsf{ml}}}{\partial \mathbf{w}} + \frac{\partial \mathcal{M}^{\mathsf{ml}}}{\partial \mathbf{w}} \times \left\{ \frac{\partial \mathcal{M}^{\mathsf{o}}}{\partial \mathbf{x}} + \frac{\partial \mathcal{M}^{\mathsf{ml}}}{\partial \mathbf{x}} \right\} \circ \left\{ \mathcal{M}^{\mathsf{o}} + \mathcal{M}^{\mathsf{ml}} \right\}, \qquad (22)$$

which depends on the *tangent linear of the original model* \mathcal{M}° .

We need to make OOPS and TensorFlow interact!

Introduction: machine learning and data assimilation

- 2) The Quasi Geostrophic model
- 3 Idealised ML experiments with the QG model
- 4 Coupled DA-ML experiments with the QG model
- 5 Conclusions

- ML tools can be used to learn either the *full model dynamics* or the *model error dynamics* of a system using only observations of the system.
- ▶ If the observations are *sparse* and *noisy*, ML must be coupled with DA:
 - DA is used to estimate the state of the system;
 - ML is used to learn the model or model error dynamics.
- ▶ With perfect observations of the *QG model*, we have shown that it is possible to learn the model or model error dynamics with only *simple artificial neural networks*.
- The best results are obtained when learning the model error dynamics instead of the full model dynamics.
- ▶ The application to sparse and noisy observations is on the way!

- Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models, Nonlin. Processes Geophys., 26, 2019.
- Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Foundations of Data Science, 2 (1), 2020.
- Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model, J. Comput. Sci., 2020, in revision.
- Laloyaux, P., Bonavita, M., Chrust, M., and Gürol, S.: Exploring the potential and limitations of weak-constraint 4D-Var, Q. J. R. Meteorol. Soc, 2020.