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Introduction: machine learning and data assimilation Machine learning and optimisation

The emergence of machine learningThe emergence of machine learning

I Machine learning (ML) methods, and in particular deep learning (DL), have recently
demonstrated impressive skills in reproducing complex spatiotemporal processes.

I The emergence of DL is largely due to:
I the development of efficient and user-friendly libraries;
I the increasing computational capabilities (and in particular the use of GPUs);
I the access to (very) large datasets for training.
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Introduction: machine learning and data assimilation Machine learning and optimisation

Machine learning and optimisationMachine learning and optimisation

Definition

Machine learning (ML) algorithms build a mathematical model based on sample data,
known as “training data”, in order to make predictions or decisions without being
explicitly programmed to perform the task.

I In most cases, the goal is to minimise a loss function which
expresses the discrepancy between the model prediction and the
data:

w∗ = arg min
w∈RNp

Ne∑
i=1

∥∥yi −M(w, xi)
∥∥2

2
. (1)

I The set
{

(xi, yi), i = 1 . . . Ne
}

is the training data.
I The model M depends on a set of parameters w ∈ RNp .

I This approach is called supervised learning .
I In this sense, ML is not that far from data assimilation (DA).
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Introduction: machine learning and data assimilation Machine learning for numerical weather prediction

Machine learning for numerical weather predictionMachine learning for numerical weather prediction

I Suppose that ψ(t) is the trajectory of a physical system and define

xi = ψ
(
i×∆t

)
, (2a)

yi = ψ
(
(i+ 1)×∆t

)
. (2b)

I Then the ML problem (1) consists in finding the best approximation of the map
ψ(t) 7→ ψ(t+ ∆t), i.e., the resolvent of ψ(t), among all models{

M : x 7→ M(w,x), w ∈ RNp
}
. (3)
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Introduction: machine learning and data assimilation Machine learning for numerical weather prediction

Machine learning for numerical weather predictionMachine learning for numerical weather prediction

I Such approaches has been used to reconstruct the dynamics of low-order models
(Lorenz 1963, Lorenz 1996, Kuramoto–Sivashinski) using different variants:

I recurrent neural network [Park and Zhu, 1994];
I reservoir computing [Pathak et al., 2017, 2018];
I artificial neural networks [Dueben and Bauer, 2018].

I In these examples, the trajectory of the system is perfectly known.
I By contrast, observations in NWP are sparse and noisy : we need DA to recover the

full state and to filter the noise!
I A rigorous formalism for this problem is that of a DA system with the model

parameters w inside the control vector [Bocquet et al., 2019, 2020; Brajard et al.,
2020].
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Introduction: machine learning and data assimilation Machine learning and data assimilation

The data assimilation problemThe data assimilation problem

I In this case, the cost function to minimise is

J (w,x0, . . . ,xNt ) = 1
2

Nt∑
k=0

∥∥yk −Hk(xk)
∥∥2

R−1
k

+ 1
2

Nt−1∑
k=0

∥∥xk+1 −Mk(w,xk)
∥∥2

Q−1
k

, (4)

I xk ∈ RNx is the state at time tk;
I yk ∈ RNy is the observation vector at time tk;
I w ∈ RNp is the set of parameters of the surrogate model Mk (e.g., the

weights of an artificial neural network);
I Nt is the length of the assimilation or training window .

I This resemble a typical weak-constraint 4D-Var cost function!
I If Hk = Id (full observations) and R = 0 (no observation noise), we recover the

standard ML cost function.
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Introduction: machine learning and data assimilation Machine learning and data assimilation

Joint minimisation of w and xJoint minimisation of w and x

I If possible, one can optimise for the parameters w and the trajectory x0, . . . ,xNt at
the same time.

I This method has been used by [Bocquet at al., 2019] to reconstruct the dynamics
of the Lorenz 1996 and Kuramoto–Sivashinski models, with as few parameters as
possible.

I For realistic models, a joint minimisation is very difficult to implement:
I the state space RNx is already high-dimensional ;
I in order to get an accurate description of the dynamics, the number of

parameters Np and the length of the training window Nt must be large
enough.
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Introduction: machine learning and data assimilation Machine learning and data assimilation

Coordinate descent: alternate ML and DACoordinate descent: alternate ML and DA

I Because the parameters w and the trajectory x0, . . . ,xNt are of different nature, it
could be more efficient to use a coordinate descent, in which we alternate

I a standard DA step: minimisation over (x0, . . . ,xNt );
I a standard ML step: minimisation over w.

I The algorithm is flexible: the DA and ML methods are independent.
I In this framework, the use of ML is more technical than conceptual.

(x?,w?)

y

Initialisation

fix w

DA step

min. over x

ML step

min. over w

wi xa

wa
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Introduction: machine learning and data assimilation Machine learning and data assimilation

Coordinate descent: alternate ML and DACoordinate descent: alternate ML and DA

I This method has been used by [Bocquet et al., 2020] and [Brajard et al., 2020] to
reconstruct the dynamics of the Lorenz 1996 and Lorenz 2005 (two-scale) models
using convolutional neural networks.

I The extension to realistic models is not immediate:
I the algorithm initialisation is critical;
I the convergence is not guaranteed and we cannot afford many DA steps.

I Instead of constructing the model from scratch, we could build a hybrid model
using an already existent model:

Mh
k : (w,x) 7→ Mo

k(x) +Mml
k (w,x), (5)

whereMo is the original model andMml is the trainable model .
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Introduction: machine learning and data assimilation Machine learning and data assimilation

The hybrid modelThe hybrid model

I In this case, the ML cost can be rewritten as

J ml(w,x0, . . . ,xNt ) = 1
2

Nt−1∑
k=0

∥∥xk+1 −Mh
k(w,xk)

∥∥2
Q−1

k

, (6)

= 1
2

Nt−1∑
k=0

∥∥xk+1 −Mo
k(xk)−Mml

k (w,xk)
∥∥2

Q−1
k

. (7)

I Therefore, the trainable modelMml has to learn the relationship

xk 7→ xk+1 −Mo
k(xk) = ηk+1, (8)

in other words the model error associated toMo.
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Introduction: machine learning and data assimilation Machine learning and data assimilation

Short summaryShort summary

How to estimate the full model dynamics using perfect observations (full and noiseless)?

J (w) =
1
2

Nt−1∑
k=0

∥∥xk+1 −M
ml
k (w, xk)

∥∥2
Q−1

k

.

How to estimate the full model dynamics using sparse and noisy observations?

J (w, x?) =
1
2

Nt∑
k=0

∥∥yk −Hk(xk)
∥∥2

R−1
k

+
1
2

Nt−1∑
k=0

∥∥xk+1 −M
ml
k (w, xk)

∥∥2
Q−1

k

.

How to estimate the model error using sparse and noisy observations?

J (w, x?) =
1
2

Nt∑
k=0

∥∥yk −Hk(xk)
∥∥2

R−1
k

+
1
2

Nt−1∑
k=0

∥∥xk+1 −M
o
k(xk)−Mml

k (w, xk)
∥∥2

Q−1
k

.
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Introduction: machine learning and data assimilation Machine learning and data assimilation

Learning the model errorLearning the model error

I We want to validate this approach using the framework developed at ECMWF
(namely OOPS).

I The observations will be generated using the QG model :
I a reasonably complex problem (2D, 2 layers, 1600 variables in total);
I sufficiently small to perform extensive tests;
I it has been used to validate the weak-constraint 4D-Var algorithm [Laloyaux et

al., 2020].
I The DA step will be performed using the strong-constraint 4D-Var algorithm:

I the original modelMo is to be determined (perturbed QG model);
I the total training window will be divided into smaller sub-windows.

I The ML step will be performed with standard ML tools:
I the trainable modelMml will be built with artificial neural networks;
I the optimisation is left to TensorFlow 2.
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The Quasi Geostrophic model Model description

Brief model descriptionBrief model description

I The model expresses the conservation of potential vorticity q for two layers of
constant potential temperature in the x− y plane (two-dimensional model):

dq1

dt = dq2

dt = 0. (9)

I The potential vorticity q is related to the stream function ψ by
q1 = ∆ψ1 − F1(ψ1 − ψ2) + βy, (10a)
q2 = ∆ψ2 − F2(ψ2 − ψ1) + βy +R(x, y). (10b)

I The domain is periodic in the x direction and fixed boundary conditions are used
for q in the y direction. We use a discretisation of 40× 20 points.

I The orography R is characterised by a Gaussian hill.
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The Quasi Geostrophic model Model description

Dynamical behaviourDynamical behaviour

[show animation here]

I We have first checked that the model is stable and realistic for very long runs.
I The evolution of ψ is characterised by a slow westward motion, with a mean period

around 16 d.
I The model is chaotic, with a doubling time of errors around 250 h.
I For comparison, the doubling time of errors in the IFS is around 2 d.
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The Quasi Geostrophic model Model description

Data assimilation with the QG modelData assimilation with the QG model

I We use the DA setup of [Laloyaux et al., 2020].
I The control vector is ψ: the state dimension is Nx = 40× 20× 2 = 1600.
I Observations are available every ∆t = 2 h at Ny = 50 random locations.
I The observation standard deviation is set to σ = 0.1, about 2 % of the model

variability;
I The 4D-Var algorithm is used with consecutive windows of ∆T = 1 d.
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The Quasi Geostrophic model The perturbed QG model

The perturbed QG model: definitionThe perturbed QG model: definition

I We add a model error on top of the exact QG modelMt to create the original
modelMo. The goal will be to recover the exact modelMt.

I In the weak-constraint 4D-Var test series [Laloyaux et al., 2020], the model error is
a random additive noise, with a given covariance, and constant in time.

I However, such model noise makes the model unstable in the long term: we need
another approach.

I ForMo we use the QG model with different parameters (top and bottom layer
depth, orography) and different integration time step.

Exact QG modelMt Perturbed QG modelMo

Rtop = 6000 m Rtop = 5750 m
Rbot = 4000 m Rbot = 4250 m
δt = 10 min δt = 20 min
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The Quasi Geostrophic model The perturbed QG model

The perturbed QG model: forecast skillThe perturbed QG model: forecast skill

I We compute the forecast skill (FS) ofMo compared toMt:

FS(t) = RMSE
(
Mt

0→t(x0),Mo
0→t(x0)

)
(11)
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I The quantity is averaged over a large number (100) of initial conditions x0 to get a reliable
estimate.

I NB: learning the model error starting from persistence (i.e., whenMo = Id) is roughly
equivalent to learning the full dynamics!
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The Quasi Geostrophic model The perturbed QG model

The perturbed QG model: model errorThe perturbed QG model: model error

[show animation here]
I The resulting model error is dominated by the orography error.
I Compared to the error with persistence, it is large scale and it has a slow time

evolution.
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Idealised ML experiments with the QG model Making the database

Idealised ML experimentsIdealised ML experiments

I Before starting the experiments with sparse and noisy observations, we want to
evaluate the potential of ML.

I What kind of model should be used? How should they be trained?
I What level of improvement can we expect?

I Therefore, we first try to learn the model error using perfect observations (i.e., full
and noiseless).
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Idealised ML experiments with the QG model Making the database

Database creationDatabase creation

I We first make a long run with the exact QG modelMt and we extract ψ at regular
intervals:

ψk = ψ(k ×∆T ), k = 0, . . . , Nt. (12)

I Then, we compute the model error η for the perturbed QG modelMo as

ηk+1 = ψk+1 −Mo(ψk), k = 0, . . . , Nt − 1. (13)

I Finally, the database for ML is{(
ψk−1, ηk

)
, k = 1, . . . , Nt

}
. (14)

I The process is repeated 18 times:
I one trajectory is used for training ;
I one trajectory is used for validation (when to stop the training);
I 16 trajectories are used for testing .

I This experiment has two hyperparameters:
I the sampling period ∆T → 1, 2, 4, 8 d ;
I the size of the database Nt → 16, 32, 64, . . . , 1024.
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Idealised ML experiments with the QG model Machine learning models and training

Machine learning modelsMachine learning models

I The trainable modelMml is built using artificial neural networks.
I Two classes of architectures are considered:

I sequential models with only dense or fully-connected layers;
I sequential models with convolutional layers followed by dense layers.

ψk Conv Conv Flatten Dense Dense Reshape ηk+1

ψk Flatten Dense Dense Reshape ηk+1
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Idealised ML experiments with the QG model Machine learning models and training

Machine learning modelsMachine learning models

I The models are implemented using TensorFlow (only a few lines of python code).
I For each experiment, 24 models are trained, with variation of

I the number of layers → 1, . . . , 4 ;
I the number of nodes or filters per layer → 4, 8, 16;
I the activation function → linear or relu x 7→ 1

2 (x+ |x|).
I The models are designed to use as few parameters as possible (Np is between 104

and 105) because the problem is small (Nx = 1600).
I Regularisation is empirically unnecessary in our experiments.
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Idealised ML experiments with the QG model Machine learning models and training

Model trainingModel training

I The models are trained using Adam, a variant of the stochastic gradient descent
implemented in TensorFlow.

I The model input / output are normalised to accelerate the convergence.
I The loss function is the mean squared error (MSE).

I The training consists of:
I 103 epochs with an initial learning rate of 10−3;
I 103 epochs with an initial learning rate of 10−4 (fine-tuning);
I in each case, we keep the model with the lowest validation MSE.
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Idealised ML experiments with the QG model First machine learning experiment

Training exampleTraining example
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I Trainable modelMml: 1 dense layer with 4 nodes, linear activation, 14 404
parameters in total.

I The model learns about 92 % of the model error variance.
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Idealised ML experiments with the QG model First machine learning experiment

Corrected forecast skillCorrected forecast skill
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I The trained model is included in the hybrid modelMh =Mo +Mml and tested in forecast
condition:

FS(t) = RMSE
(
Mt

0→t(x0),Mh
0→t(x0)

)
(15)

I The FS is averaged over 16 different initial conditions x0 to get a reliable estimate.
I The correction is still effective after a 10 d forecast!
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Idealised ML experiments with the QG model First machine learning experiment

Next stepsNext steps

I What are the results for the other models? Which are the best models?
I What happens if we change the sampling period ∆T or the size of the database Nt?
I How does this compare to persistence?
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Idealised ML experiments with the QG model Systematic machine learning experiments

Comparative forecast skillComparative forecast skill
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I There is a clear tendency: the more parameters, the lower the RMSE.
I The spread at 16 d is much larger than at 8 d.
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Idealised ML experiments with the QG model Systematic machine learning experiments

How long must be the training trajectory?How long must be the training trajectory?
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I At fixed sampling period ∆T , the 8 d forecast improves with the length of the
training trajectory.

I Globally the RMSE improves as the sampling period ∆T is decreased, even though
this means using more hybrid model cycles.
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Idealised ML experiments with the QG model Systematic machine learning experiments

Which are the best models?Which are the best models?

I Increasing the number of parameters (e.g., the number of nodes) is a good strategy.
I The number of layers and layer types (dense or convolutional) has little impact.
I Nonlinear activation functions are more efficient for small databases or if the

sampling period ∆T is long. This is related to the development of nonlinearity for
longer model forecast.
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Alban Farchi Exploring machine learning for data assimilation 7 May 2020 32 / 50



Idealised ML experiments with the QG model Systematic machine learning experiments

What about longer forecast?What about longer forecast?
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I The hybrid modelMh clearly improves upon the original modelMo.
I However, increasing the length of the training trajectory Nt or decreasing the

sampling period ∆T does not improve the RMSE.

Alban Farchi Exploring machine learning for data assimilation 7 May 2020 33 / 50



Idealised ML experiments with the QG model Systematic machine learning experiments

Comparison with persistenceComparison with persistence
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I The training is easier whenMo is the perturbed QG model than with persistence
(Mo = Id).

I With the perturbed QG model, the RMSE is globally better and much better for
small databases.

I With persistence, decreasing the sampling period ∆T does not significantly improve
the RMSE.
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Idealised ML experiments with the QG model Systematic machine learning experiments

SummarySummary
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Coupled DA–ML experiments with the QG model The data assimilation step

Coupled DA–ML experimentsCoupled DA–ML experiments

I We are now ready to start the coupled DA–ML experiments.
I We first perform a single cycle: one DA step, followed by one ML step.
I We then evaluate our options.
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Coupled DA–ML experiments with the QG model The data assimilation step

The data assimilation stepThe data assimilation step

I Observations are available every ∆t = 2 h at Ny = 50 random locations.
I The data assimilation step is performed with the strong-constraint 4D-Var

algorithm:
I we use windows of ∆T = 1 d;
I the algorithm uses the original (perturbed) QG modelMo;
I the observation standard deviation is set to σ = 0.1, about 2 % of the model

variability;
I the standard deviation of the background covariance matrix B is optimally

tuned to yield the lowest analysis RMSE.
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Coupled DA–ML experiments with the QG model The data assimilation step

Database creation with data assimilationDatabase creation with data assimilation

I We first make a long run with the exact QG modelMt and we extract ψ at regular
intervals:

ψt
k = ψ(k ×∆T ), k = 0, . . . , Nt. (16)

I Then, for each window k, we generate the synthetic observations yk (with noise)
and we use the 4D-Var algorithm (withMo) to compute the analysis ψa

k and the
analysis increment δψa

k+1 as

δψa
k+1 = ψa

k+1 −Mo(ψa
k). (17)

I Finally, the database for ML is{(
ψa

k−1, δψ
a
k

)
, k = 1, . . . , Nt

}
. (18)

I The process is repeated 18 times:
I one trajectory is used for training ;
I one trajectory is used for validation (when to stop the training) ;
I 16 trajectories are used for testing .
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Coupled DA–ML experiments with the QG model The data assimilation step

Data assimilation resultsData assimilation results

I We have successfully applied the method for 1032 consecutive assimilation windows.
I The analysis RMSE stabilises after about 5 windows: we drop the first 8 windows.
I The time-averaged analysis RMSE, averaged over the 18 trajectories, is about 0.25.
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Coupled DA–ML experiments with the QG model The machine learning step

Machine learning models and trainingMachine learning models and training

I We can easily play with the size of the database by keeping only the first Nt
elements.

I We can also play with the sampling period ∆T , for example by only keeping every
other analysis state.

I We can now start the ML step with the same models and same training method as
for the idealised experiments.
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Training exampleTraining example
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I Trainable modelMml: 1 dense layer with 4 nodes, linear activation, 14 404
parameters in total.

I The model learns about 87 % of the increments variance.
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Further model evaluationFurther model evaluation

I The primary goal is to learn the model error and not the analysis increments.
I For each of the 16 test trajectory, we compute the model error using the truth:

ηk+1 = ψt
k+1 −Mo(ψt

k), k = 0, . . . , Nt − 1. (19)

I We use this ideal database to test the trained modelMml.
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Further model evaluationFurther model evaluation
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I Trainable modelMml: 1 dense layer with 4 nodes, linear activation, 14 404
parameters in total.

I The model learns about 87 % of the increments variance, but only 70 % of the
model error variance.
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Corrected forecast skillCorrected forecast skill
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I The correction is less effective than if trained with perfect observations (full and
noiseless), but still quite good!
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Next stepsNext steps

I Confirm these results with other ML models.
I As for the idealised experiments, change the size of the database Nt and the

sampling period ∆T .
I Use the hybrid modelMh for data assimilation and compare the results with other

model error estimation methods, e.g., weak-constraint 4D-Var.
I We need to be able to perform forecasts shorter than the assimilation window

∆T .
I An easy fix could be to assume a linear growth of the error in time.
I Another option is to cycle the hybrid modelMh between consecutive sampling

times.
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Using the hybrid model for data assimilationUsing the hybrid model for data assimilation

I Suppose that we want to predict the model error for a 1 d integration using a
sampling period of 2 d.

I The effective model Me to train is

Me : (w,x) 7→ Mh(w,Mh(w,x)
)
, (20)

whereMh is the hybrid model:

Mh : (w,x) 7→ Mo(x) +Mml(w,x). (21)

I For the ML step, we need the gradient ofMe with respect to w:

∂Me

∂w = ∂Mml

∂w + ∂Mml

∂w ×
{
∂Mo

∂x + ∂Mml

∂x

}
◦
{
Mo +Mml

}
, (22)

which depends on the tangent linear of the original model Mo.
I We need to make OOPS and TensorFlow interact!
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ConclusionsConclusions

I ML tools can be used to learn either the full model dynamics or the model error
dynamics of a system using only observations of the system.

I If the observations are sparse and noisy , ML must be coupled with DA:
I DA is used to estimate the state of the system;
I ML is used to learn the model or model error dynamics.

I With perfect observations of the QG model , we have shown that it is possible to
learn the model or model error dynamics with only simple artificial neural networks.

I The best results are obtained when learning the model error dynamics instead of the
full model dynamics.

I The application to sparse and noisy observations is on the way!
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