Probabilistic downscaling to detect regional present and future climate hazards

Sherman Lo, Ritabrata Dutta, Peter Dueben, Peter Watson

University of Warwick, ECMWF, University of Bristol

28th April 2020

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

Funding

- University of Warwick
- Alan Turing Institute

▲ 四 ▶

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

Figure: Precipitation

<u>Sherman Lo, Ritabrata</u> Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

э 4 / 55 28th April 2020

- ∢ ⊒ →

We have computer simulations of the weather/climate, they are called *model fields*.

We have computer simulations of the weather/climate, they are called *model fields*.

- Temperature
- Precipitable water content
- Humidity
- Geopotential
- Wind speed and velocity

Figure: Air temperature

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

3 6 / 55 28th April 2020

< E

▲ 同 ▶ → 三 ▶

э

→ ∃ →

- 40 years of data (1979 2019)
- Observed precipitation ($\sim 10\,\text{km})$
- Simulated model fields (\sim 80 km)

▲ 同 ▶ → 三 ▶

э

→ ∃ →

40

- 30

- 20

- 10

Can we use the model fields on a *coarse grid* to forecast the precipitation on the *fine grid*? This task is known as *downscaling*.

 $1.2\pm1.5\,\text{mm}$

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

A D N A B N A B N A B N

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

э

• • • • • • • • • •

• Occurrence of precipitation

э

< □ > < /□ >

- Occurrence of precipitation
- Quantity of precipitation

- Occurrence of precipitation
- Quantity of precipitation
- Autocorrelation of precipitation

- Occurrence of precipitation
- Quantity of precipitation
- Autocorrelation of precipitation
- Affected by the model fields

Figure: Autocorrelation of precipitation

We are dealing with a *zero-inflated* random variable.

We are dealing with a *zero-inflated* random variable. Sometimes, the precipitation is *exactly* 0 mm,

We are dealing with a *zero-inflated* random variable. Sometimes, the precipitation is *exactly* 0 mm, sometimes it is a positive number.

We are dealing with a *zero-inflated* random variable. Sometimes, the precipitation is *exactly* 0 mm, sometimes it is a positive number.

• We introduce the *compound-Poisson*.

$Z_t =$ number of times it rains at day t

A D N A B N A B N A B N

 Z_t = number of times it rains at day t

 $R_t^{(i)} =$ amount of precipitation in a rain event at day t

(日)

 Z_t = number of times it rains at day t

 $R_t^{(i)} =$ amount of precipitation in a rain event at day t

 Y_t = amount of precipitation at day t

(日)

 Z_t = number of times it rains at day t

 $R_t^{(i)} =$ amount of precipitation in a rain event at day t

 Y_t = amount of precipitation at day t

$$Y_t | Z_t = \sum_{i=1}^{Z_t} R_t^{(i)}$$

$Z_t \sim \mathsf{Poisson}(\lambda_t)$

∃ →

Image: A match a ma

$Z_t \sim \text{Poisson}(\lambda_t)$

$R_t^{(i)} \sim \text{Gamma}(1/\omega_t, 1/(\omega_t \mu_t))$

∃ →

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

$Z_t \sim \mathsf{Poisson}(\lambda_t)$

$$R_t^{(i)} \sim \mathsf{Gamma}(1/\omega_t, 1/(\omega_t \mu_t))$$

$$Y_t | Z_t = \sum_{i=1}^{Z_t} R_t^{(i)} \sim \mathsf{Gamma}(Z_t / \omega_t, 1 / (\omega_t \mu_t))$$

∃ →

Image: A match a ma

2

$$Z_t \sim \mathsf{Poisson}(\lambda_t)$$

$$R_t^{(i)} \sim \mathsf{Gamma}(1/\omega_t, 1/(\omega_t \mu_t))$$

$$Y_t | Z_t = \sum_{i=1}^{Z_t} R_t^{(i)} \sim \text{Gamma}(Z_t / \omega_t, 1 / (\omega_t \mu_t))$$

 $Y_t \sim \text{Compound-Poisson}$

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

• We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.

э

Image: A matched black

- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and $Y_t | Z_t$ undergo an autoregressive and moving average process.

- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and $Y_t | Z_t$ undergo an autoregressive and moving average process.

- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and $Y_t | Z_t$ undergo an autoregressive and moving average process.

For example

$$\lambda_t = \exp{\left[\boldsymbol{\beta}_\lambda \mathbf{x_t}\right.}$$

- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and $Y_t | Z_t$ undergo an autoregressive and moving average process.

For example

$$\lambda_t = \exp\left[\beta_\lambda \mathbf{x}_{\mathbf{t}} + \phi_\lambda (\ln \lambda_{t-1} - k_\lambda)\right]$$

3
- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and Y_t|Z_t undergo an autoregressive and moving average process.

For example

$$\lambda_{t} = \exp\left[\beta_{\lambda}\mathbf{x}_{t} + \phi_{\lambda}(\ln\lambda_{t-1} - k_{\lambda}) + \theta_{\lambda}\frac{Z_{t-1} - \lambda_{t-1}}{\sqrt{\lambda_{t-1}}}\right]$$

- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and Y_t|Z_t undergo an autoregressive and moving average process.

For example

$$\lambda_{t} = \exp\left[\beta_{\lambda}\mathbf{x}_{t} + \phi_{\lambda}(\ln\lambda_{t-1} - k_{\lambda}) + \theta_{\lambda}\frac{Z_{t-1} - \lambda_{t-1}}{\sqrt{\lambda_{t-1}}} + k_{\lambda}\right]$$

- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and Y_t|Z_t undergo an autoregressive and moving average process.

For example

$$\lambda_{t} = \exp\left[\beta_{\lambda}\mathbf{x}_{t} + \phi_{\lambda}(\ln\lambda_{t-1} - k_{\lambda}) + \theta_{\lambda}\frac{Z_{t-1} - \lambda_{t-1}}{\sqrt{\lambda_{t-1}}} + k_{\lambda}\right]$$

$$\mu_{t} = \exp\left[\beta_{\mu}\mathbf{x}_{t} + \phi_{\mu}(\ln\mu_{t-1} - k_{\mu}) + \theta_{\mu}\frac{y_{t-1} - Z_{t-1}\mu_{t-1}}{\mu_{t-1}\sqrt{Z_{t-1}\omega_{t-1}}} + k_{\mu}\right]$$

- We make λ_t , μ_t , and ω_t a function of the model fields $\mathbf{x_t}$.
- We make Z_t and Y_t|Z_t undergo an autoregressive and moving average process.

For example

$$\lambda_{t} = \exp\left[\beta_{\lambda}\mathbf{x}_{t} + \phi_{\lambda}(\ln\lambda_{t-1} - k_{\lambda}) + \theta_{\lambda}\frac{Z_{t-1} - \lambda_{t-1}}{\sqrt{\lambda_{t-1}}} + k_{\lambda}\right]$$

$$\mu_{t} = \exp\left[\beta_{\mu}\mathbf{x}_{t} + \phi_{\mu}(\ln\mu_{t-1} - k_{\mu}) + \theta_{\mu}\frac{y_{t-1} - Z_{t-1}\mu_{t-1}}{\mu_{t-1}\sqrt{Z_{t-1}\omega_{t-1}}} + k_{\mu}\right]$$

$$\omega_t = \exp\left[\beta_\omega \mathbf{x}_{\mathbf{t}} + k_\omega\right]$$

Figure: Graphical model

2

A D N A B N A B N A B N

28th April 2020 21 / 55

Figure: Simulated data autocorrelation ARMA(5,5)

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

Image: A math a math

э

• This model is wrong so it is important to quantify how wrong the model is.

- This model is wrong so it is important to quantify how wrong the model is.
- The problem of modelling fitting can be done using Bayesian inference to get *uncertainity quantification*.

- This model is wrong so it is important to quantify how wrong the model is.
- The problem of modelling fitting can be done using Bayesian inference to get *uncertainity quantification*.
- This was done using Markov chains Monte Carlo (MCMC).

- This model is wrong so it is important to quantify how wrong the model is.
- The problem of modelling fitting can be done using Bayesian inference to get *uncertainity quantification*.
- This was done using Markov chains Monte Carlo (MCMC).
- We use Monte Carlo which uses random numbers to solve a model fitting problem. Flucations in solutions, (samples), reflect the uncertainity.

- This model is wrong so it is important to quantify how wrong the model is.
- The problem of modelling fitting can be done using Bayesian inference to get *uncertainity quantification*.
- This was done using Markov chains Monte Carlo (MCMC).
- We use Monte Carlo which uses random numbers to solve a model fitting problem. Flucations in solutions, (samples), reflect the uncertainity.
- We use a Markov chain to draw dependent samples in such a way they converge to the right answer.

In Bayesian inference, we are interested in studying the posterior distribution

posterior \propto likelihood \times prior

In Bayesian inference, we are interested in studying the posterior distribution

posterior \propto likelihood \times prior

$$\underbrace{\pi(\beta, z_{1:T} | x_{1:T}, y_{1:T})}_{\text{posterior}} \propto \underbrace{p(y_{1:T}, z_{1:T} | x_{1:T}, \beta)}_{\text{likelihood}} \times \underbrace{\pi(\beta)}_{\text{prior}}$$

p(data|parameters) likelihood

э

posterior

p(data|parameters) likelihood p(parameters|data)

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

э

28th April 2020 26 / 55

But the prior is subjective!

э

But the prior is subjective!

We use Gibbs sampling to split the posterior into two parts

• Sample $Z_t | \beta, Z_{1:T \setminus t}, y_{1:T}, x_{1:T}$

We use Gibbs sampling to split the posterior into two parts

- Sample $Z_t | \beta, Z_{1:T \setminus t}, y_{1:T}, x_{1:T}$
- Sample $\beta | y_{1:T}, Z_{1:T}, x_{1:T}$

We use Gibbs sampling to split the posterior into two parts

- Sample $Z_t | \beta, Z_{1:T \setminus t}, y_{1:T}, x_{1:T}$
- Sample $\beta | y_{1:T}, Z_{1:T}, x_{1:T}$

We use slice sampling and elliptical slice sampling.

We use slice sampling to sample $Z_t | \beta, Z_{1:T \setminus t}, y_{1:T}, x_{1:T}$.

We use slice sampling to sample $Z_t | \beta, Z_{1:T \setminus t}, y_{1:T}, x_{1:T}$.

•
$$y_t = 0 \Rightarrow Z_t = 0$$

Slice sampling:

- $s \sim \text{Uniform}(0, \pi(z^{(i)}))$
- $z^{(i+1)} \sim \mathsf{Uniform}(z:\pi(z) > s)$

We use *elliptical* slice sampling to sample β .

We use *elliptical* slice sampling to sample β . It can sample a posterior with a Normal prior.

We use *elliptical* slice sampling to sample β . It can sample a posterior with a Normal prior. For the technical:

- Chain at $\beta^{(i)}$
- $\nu \sim \text{prior}$
- s ~ Uniform(0, posterior(β⁽ⁱ⁾))
- $\theta \sim \text{Uniform}(0, 2\pi)$
- β⁽ⁱ⁺¹⁾ = β⁽ⁱ⁾ cos θ + ν sin θ if posterior(β⁽ⁱ⁺¹⁾) > s, else try another θ with a smaller support containing zero

Even more technical:

- Initial: $[\theta_{\min}, \theta_{\max}] = [\theta 2\pi, \theta]$
- If: $\theta < 0$, $\theta_{\min} = \theta$
- Else: $\theta_{\max} = \theta$

Figure: Example of a chain

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

3

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Simulate the future using different samples from the posterior (MCMC chain). Any variation reflect the uncertainity.

Figure: Probability precipitation > 15 mm

Figure: Probability precipitation > 15 mm
Forecasting

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

э

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

3

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We interpolate the model fields for now

(a) Coarse grid

(b) Fine grid

Figure: Interpolation

We impose a prior on β where neighbouring locations with similar topography have similar values

We impose a prior on β where neighbouring locations with similar topography have similar values

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_N \end{pmatrix} \sim \mathsf{N}\left(0, \tau^{-1}\mathsf{K}\right)$$

where
$$[\mathbf{K}]_{i,j} = \exp\left[-\frac{\nu}{2}\left(w_i - w_j\right)^2\right]$$
 and w_i is the topography

Figure: Simulation from prior

3

イロト イポト イヨト イヨト

Figure: MCMC chains

Figure: Forecast at Wales

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

28th April 2020 45 / 55

2

A D N A B N A B N A B N

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

3

Instead of interpolating the model fields, we can learn the model fields on the coarse grid. We use a *Gaussian process*.

x'_{i,t} = model fields at time t, location i on coarse grid
x_{j,t} = model fields at time t, location j on fine grid

$$egin{pmatrix} x'_{1,t} \ x'_{2,t} \ dots \ x'_{M,t} \end{pmatrix} \sim \mathsf{N}(0, au^{-1}\mathbf{K})$$

We can sample the model fields on the fine grid given:

- model fields on the coarse grid
- precipitation & Z on the fine grid

We can sample the model fields on the fine grid given:

- model fields on the coarse grid
- precipitation & Z on the fine grid

$$\begin{pmatrix} x_{1,t} \\ x_{2,t} \\ \vdots \\ x_{N,t} \end{pmatrix} \begin{vmatrix} x'_{1,t} \\ x'_{2,t} \\ \vdots \\ x'_{M,t} \end{pmatrix}, \{\mathbf{Y}_{1:T}\}, \{\mathbf{Z}_{1:T}\}$$

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

Image: A matrix

э

• We used the model fields on a *coarse grid* to forecast the precipitation on the *fine grid*.

- We used the model fields on a *coarse grid* to forecast the precipitation on the *fine grid*.
- We have quantified uncertainity.

• The task of downscaling is computational expensive.

э

 To transistion from weather forecasting to climate prediction, we need to forecast many years into the future.

Thank you

Sherman Lo, Ritabrata Dutta, Peter Dueben, Probabilistic downscaling to detect regional p

Image: A math