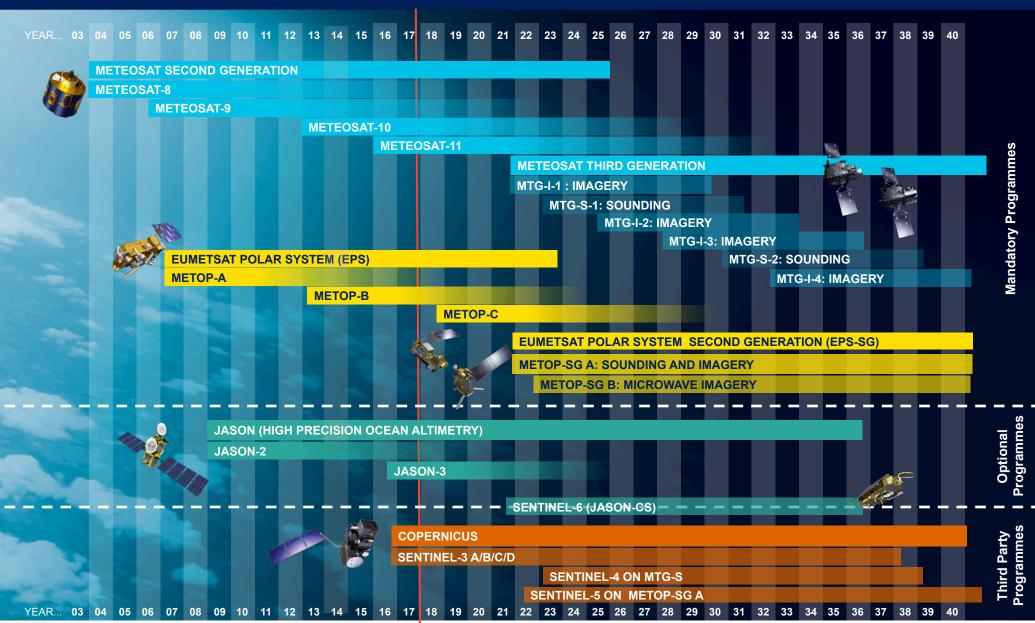
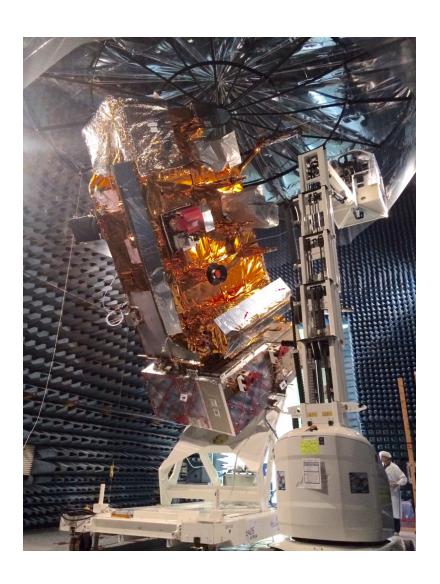


New European capabilities from space

ESA-DEVELOPED EARTH OBSERVATION MISSIONS



ERA-CLIM2 -Climate Reanalyses and Services for Society, Bern, Switzerland, 14 December 2017


Courtesy of ESA

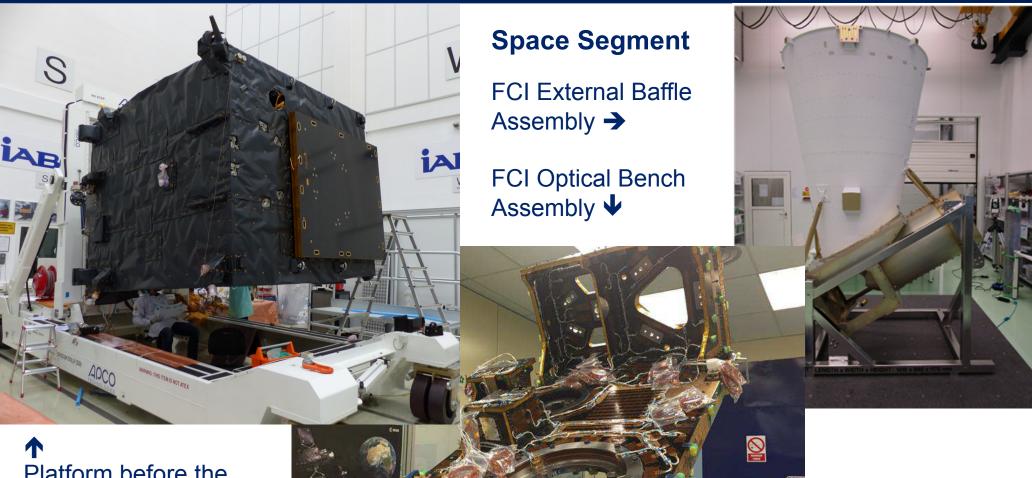
Slide 2

EUMETSAT Mission Planning

Preparing for Metop-C Launch

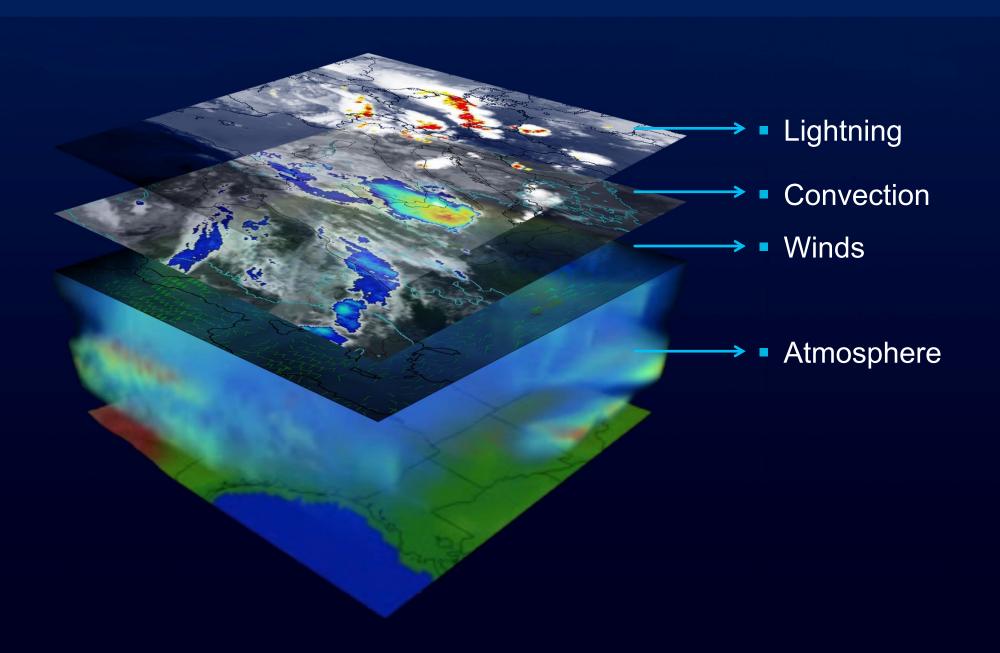
- Satellite tests ongoing
- MHS & GOME-2 instruments to be reintegrated after repair/re-calibration
- Virtualised ground segment configuration qualified for three-Metop operations
- System validation tests and operations preparation ongoing
- Target launch date advanced to 20 September 2018
- Three-Metop constellation from 2019 to 2022

Meteosat Third Generation: Mission Overview


- Imagery Mission implemented by a two-satellite MTG-I system:
 - Full disk imagery (FCI) every 10 minutes in
 16 spectral bands
 - Fast imaging of European weather every
 2.5 minutes
 - New Lightning Imager (LI)
- Hyperspectral Infrared Sounding (IRS) Mission:

chemistry in synergy with Sentinel-4

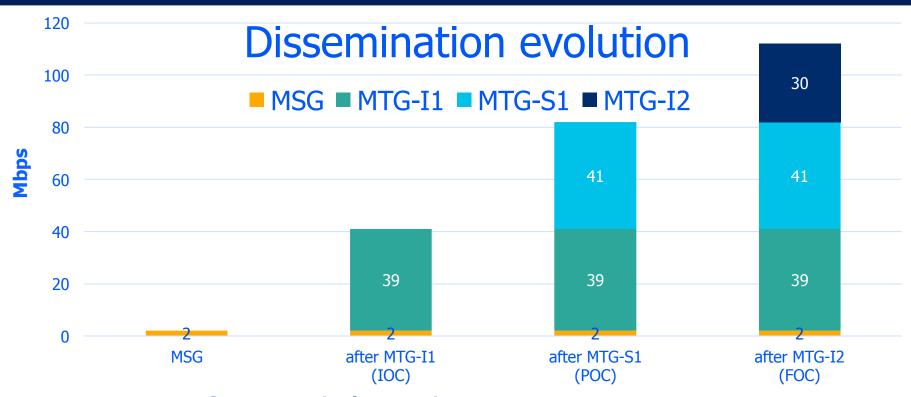
- Full disk 4-D weather cube: temperature, water vapour, O3 (every 30 minutes over Europe)


 Air quality monitoring and atmospheric
- Start of operations in 2021 and 2023
- Operational exploitation: 2021 2042+

Meteosat Third Generation

Platform before the Thermal Vacuum (TVAC) Test at IABG in Munich

4D weather cube with MTG-I and MTG-S


Evolution of the imaging capability

	Meteosat 1 st Generation				Meteosat 2 nd Generation			Meteosat 3 rd Generation		
'Core' channels	Central wavelength (H _m)	Width (FWHM) (H _{m)}	Spatial Sampling (km)		Central wavelength (H _{m)}	Width (FWHM) (H _{m)}	Spatial Sampling (km)	Central wavelength (H _{m)}	Width (FWHM) (H _{m)}	Spatial Sampling (km)
FC-VIS 0.4								0.444	0.06	1.0
FC-VIS 0.5								0.510	0.05	1.0
FC-VIS 0.6	0.7	0.35	\mathbf{x}	2.5	0.635	0.08	3.0	0.645	0.08	0.5
FC-VIS 0.8					0.81	0.07	3.0	0.86	0.07	1.0
FC-NIR 0.9								0.96	0.06	1.0
FC-NIR 1.3								1.375	0.03	1.0
FC-NIR 1.6					1.64	0.14	3.0	1.61	0.06	1.0
FC-NIR 2.2								2.26	0.05	0.5
FC-IR 3.8 *					3.9	0.44	3.0	3.8	0.40	1.0
FC-IR 6.2	6.1	1.3		5.0	6.2	1.0	3.0	6.2	1.00	2.0
FC-IR 7.3					7.35	0.5	3.0	7.35	0.50	2.0
FC-IR 8.7 *					8.7	0.4	3.0	8.7	0.40	2.0
FC-IR 9.7					9.66	0.3	3.0	9.66	0.30	2.0
FC-IR 10.8	11.5	1.9		5.0	10.8	1.0	3.0	10.5	0.7	1.0
FC-IR 12.0					12.0	1.0	3.0	12.3	0.5	2.0
FC-IR 13.3					13.4	1.0	3.0	13.3	0.60	2.0
	_	_				_	_		_	
Repeat Cycle :	30 min			15 min			10 min			

*
Dynamical range of FC-IR 3.8 channel extended to serve the fire community

Dissemination of data – MTG vs MSG: a challenge

- Huge step after each launch:
 - MSG is negligible in volume compared to MTG
 - Select the right products to satisfy user needs
 - Ensure continuity and a smooth transition
 - Ensure affordability for End users and EUMETSAT

New capabilities of MTG for climate monitoring

- By 2040 Meteosat imaging provides >60 years time series;
- Improved imaging capability contributes to:
 - research on the global circulation (storm tracks including hurricanes, life cycle of storms, long term change in polar front position, etc.);
 - surface properties and aerosols;
 - better fire detection products and an increase in the quality of climate-relevant products such as fire radiative energy and power, which can be used to calculate carbon dioxide emissions from fires.
- MTG IR sounder opens new opportunities:
 - for 3D AMV time series in conjunction with IASI/IASI-NG and AVHRR/MetImage;
 - for reanalyses with NWP models operating at regional scale and assimilating high resolution temperature, humidity and cloud information.
- Lightning imager may contribute to quantification of naturally occurring NO_x and aircraft-induced NO_x;
- Improved spatiotemporal sampling addresses analysis of extreme events at local scale, e.g., thunderstorms.

EPS Second Generation

- Primary mission: further improve Numerical Weather Prediction
- Significant contributions to other real time applications:

Nowcasting at high latitudes

Marine meteorology and operational oceanography

Operational hydrology

Air quality monitoring and atmospheric chemistry in synergy with Sentinel-5 (refer also to Copernicus slides)

Start of operations in 2021 and 2023

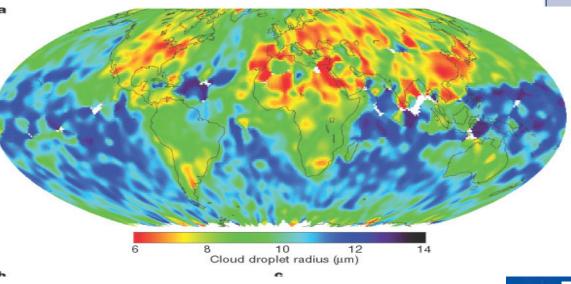
Operational exploitation: 2021 - 2042+

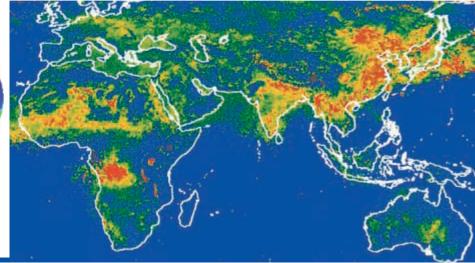
Climate monitoring: expand by 20+ years the climate data records initiated in 2006 with EPS

EPS Second Generation – Instruments' Heritage

Metop-SG A Optical Imagery and Sounding	Instrument	Predecessor on Metop	
Infrared Atmospheric Sounding (IAS)	IASI-NG	IASI	
Microwave Sounding (MWS)	MWS	AMSU-A, MHS	
Visible-infrared Imaging (VII)	METimage	AVHRR	
Radio Occultation (RO)	RO	GRAS	
UV/VIS/NIR/SWIR Sounding (UVNS)	Sentinel-5	GOME-2	
Multi-viewing, -channel, -polarisation Imaging (3MI)	ЗМІ	-/-	

Metop-SG B Microwave Laboratory	Instrument	Predecessor on Metop	
Scatterometer (SCA)	SCA	ASCAT	
Radio Occultation (RO)	RO	GRAS	
Microwave Imaging for Precipitation (MWI)	MWI	-/-	
Ice Cloud Imager (ICI)	ICI	-/-	
Advanced Data Collection System (ADCS)	Argos-4	A-DCS	


New mission 3MI imaging polarimeter on Metop SG A

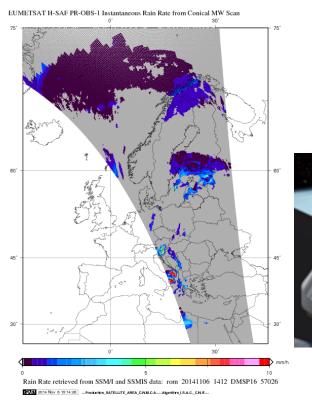

Mission objectives

- Aerosols
- Phase, altitude, properties of clouds
- Albedo, radiative budget (BRDF)

First operational polarimeter Major improvements over POLDER

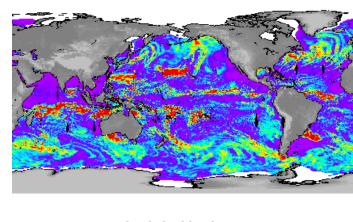
- Horizontal Resolution: 4 km
- 11 channels, extension to SWIR:
 Better aerosol characterisation
- Higher angular resolution (14 view angles)

Kaufman et al. (2002)


AI = 0.00

AI = 0.50

New mission: Micro-Wave Imager (MWI) on Metop-SG B


Mission objectives

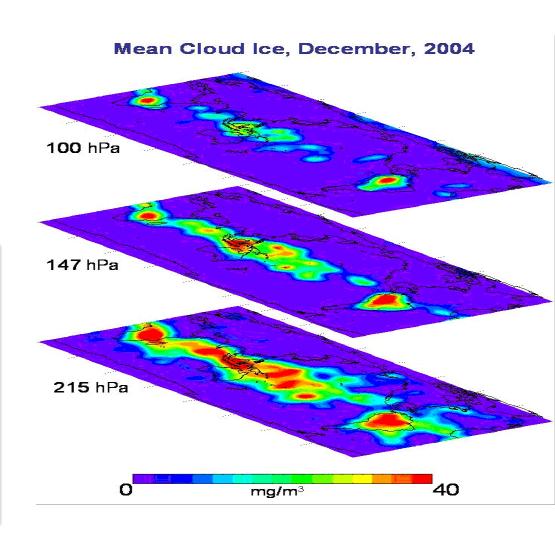
- Precipitation and clouds
- Imagery and H2O profiles
- Sea ice, surface snow

19 channels (18.7 - 183 GHz)

- Enhancement wrt SSMI/S
- Addition of sounding channels
 - Improve estimation of precipitation
 - Water vapour and clouds
- European part of future GPM constellation

Cloud Liquid Column

mm


New mission: Ice-Cloud Imager (ICI) on Metop-SG B

Mission Objectives

- Clouds (ice phase)
- Detection of snow

11 channels (183 - 664 GHz)

- First operational ice cloud imagery mission
- Meteorology and climate (Cirrus)

NASA: Aura/MLS

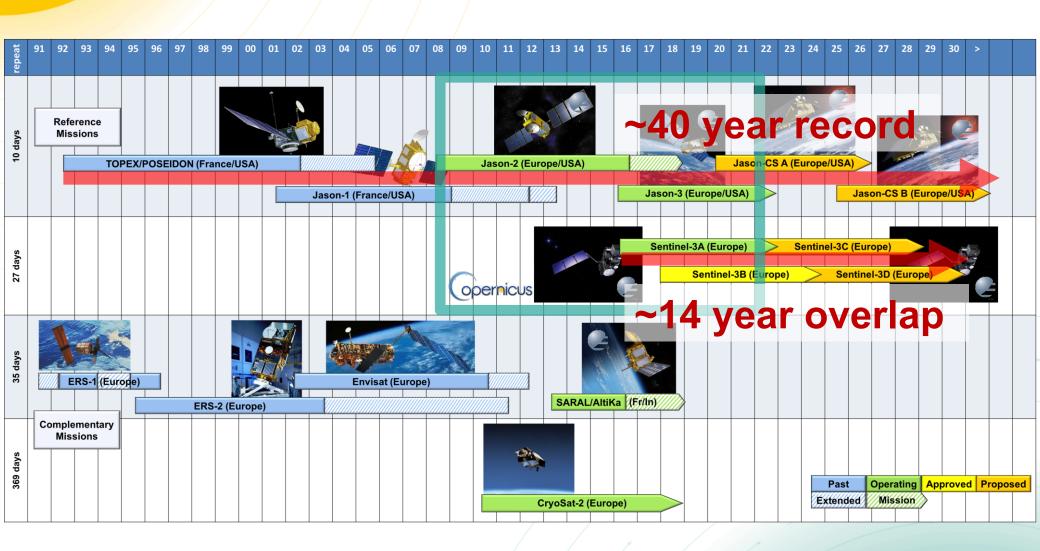
Contributions to Copernicus

Sentinel-3 Marine mission

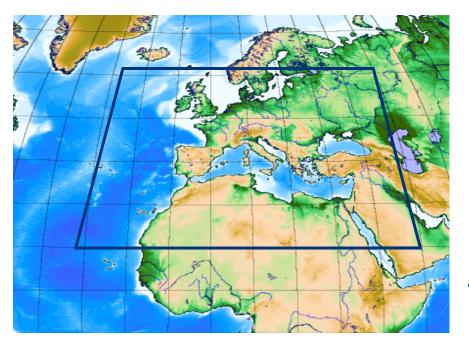
Sentinel-3A: routine operations since 16 October

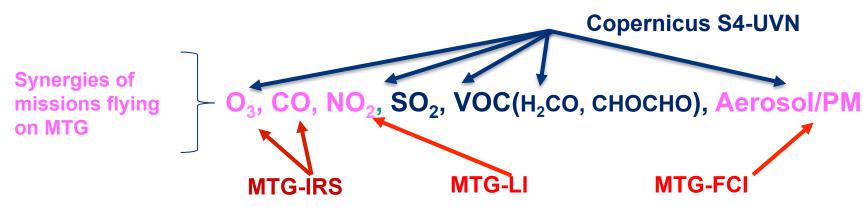
Sentinel-3B: launch in March 2018

Jason-3 and Sentinel-6/Jason-CS cooperative missions



- Sentinel-4 as part of MTG(-S) system
- Sentinel-5 as part of EPS-SG system
- Data access




"Continuity of Service"

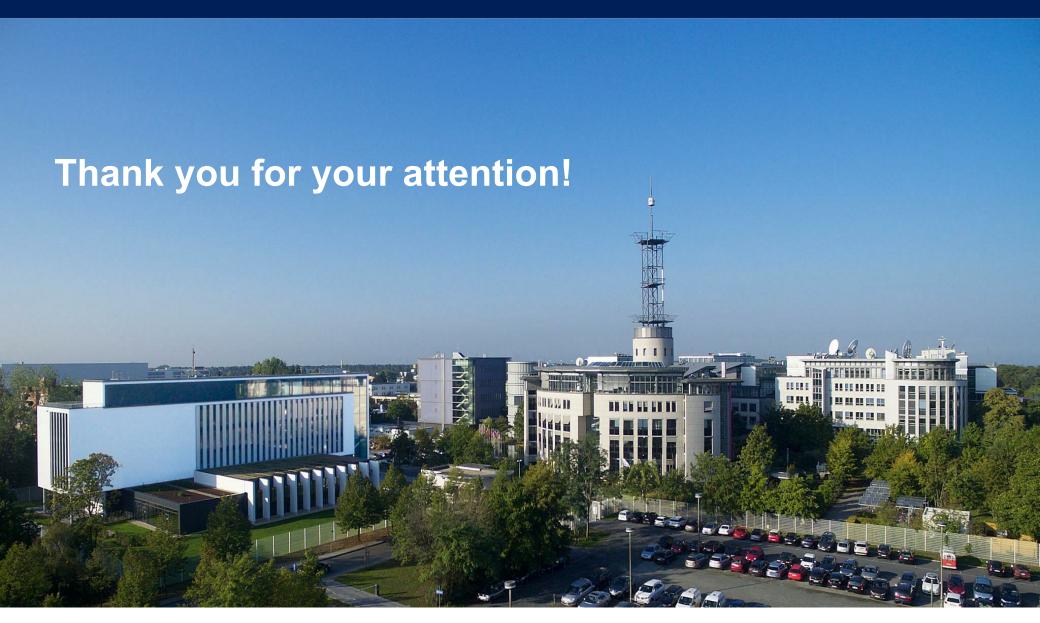
MTG Mission: Hosting Copernicus Sentinel-4

- The Copernicus Sentinel-4 sounding mission is achieved through the Ultraviolet, Visible & Nearinfrared (UVN) Instrument accommodated on the MTG-S satellites
 - covering Europe every hour
 - taking measurements in three spectral bands (UV: 305 - 400 nm; VIS: 400 - 500 nm, NIR: 750 - 775 nm)
 - with a resolution around 8km.
- The primary data products are O3, NO2, SO2,
 HCHO and aerosol optical depth.

Expansion Missions (Sentinel 7, 8, 9, ...)

▶ Phase A/B1 studies of Potential New Sentinels - responding to EU policy and user priorities:

- ✓ Anthropogenic CO2 Monitoring
- ✓ Agriculture/Urban Thermal Infrared
- ✓ Polar Ice and Snow Topographic mission
- ✓ Polar floating sea ice Passive Microwave Imaging
- ✓ Agriculture/Mining HyperSpectral
- ✓ Agriculture/Polar L-Band SAR



Conclusion

- Europe has an integrated observational approach that is targeted on key challenges and promotes the fusion of theory, models and observations;
- EUMETSAT past, current and new programmes provide the needed long-term continuity for many long-term climate data records;
- Allows also the establishment/enhancement of new data records for atmosphere, ocean and land ECVs;
- · Preparations for further Sentinel missions have already started.

www.eumetsat.int

