Is it worth replacing 3DFgat by 4DVAR in CERA's ocean component?

Can we improve coupled consistency through data assimilation?

<u>Arthur Vidard</u> Florian Lemarié, Rémi Pellerej

ERACLIM2 final general assembly

Bern, 12th of December 2017

The original 4DVar problem:

$$J(\mathbf{x}) = \frac{1}{2} \left(\mathbf{x} - \mathbf{x}^{b} \right)^{T} \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}^{b} \right) + \frac{1}{2} \left(\mathcal{H}(\mathcal{M}(\mathbf{x})) - \mathbf{y}^{o} \right)^{T} \mathbf{R}^{-1} \left(\mathcal{H}(\mathcal{M}(\mathbf{x})) - \mathbf{y}^{o} \right)$$

It can be put in a more compact form, let $F : \mathbb{R}^n \longrightarrow \mathbb{R}^{n+p}$ such that

$$F(\mathbf{x}) = \begin{pmatrix} \mathbf{B}^{-1/2} (\mathbf{x} - \mathbf{x}^b) \\ \mathbf{R}^{-1/2} (\mathcal{H}(\mathcal{M}(\mathbf{x})) - \mathbf{y}^o) \end{pmatrix}$$

Original cost function can then be rewritten

$$J(\mathbf{x}) = \frac{1}{2} \|F(\mathbf{x})\|_2^2$$

Denoting $\mathbf{F}_{\mathbf{x}} = \begin{pmatrix} \mathbf{B}^{-1/2} \\ \mathbf{R}^{-1/2} \mathbf{H}_{\mathbf{x}} \mathbf{M}_{\mathbf{x}} \end{pmatrix}$ the jacobian (tangent linear) of F differentiated around \mathbf{x} , gradient and Hessian of J read

$$\nabla_{\mathbf{x}} J = \mathbf{F}_{\mathbf{x}}^{T} F(\mathbf{x}) \in \mathbb{R}^{n}$$
$$\nabla_{\mathbf{x}}^{2} J = \mathbf{F}_{\mathbf{x}}^{T} \mathbf{F}_{\mathbf{x}} + Q(\mathbf{x}) \in \mathbb{R}^{n \times n}$$

where $Q(\mathbf{x})$ denotes the second order terms

A. Vidard (Inria)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

At each iterations

- Newton solves: $\nabla^2_{\mathbf{x}^{(k)}}J\delta\mathbf{x}^{(k+1)}=-\nabla_{\mathbf{x}^{(k)}}J$
- Gauss-Newton solves: $\mathbf{F}_{\mathbf{x}^{(k)}}^{T} \mathbf{F}_{\mathbf{x}^{(k)}} \delta \mathbf{x}^{(k+1)} = -\nabla_{\mathbf{x}^{(k)}} J$

3

At each iterations

- Newton solves: $\left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}} + Q(\mathbf{x}^{(k)})\right)\delta\mathbf{x}^{(k+1)} = -\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)})$
- Gauss-Newton solves: $\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}}\delta\mathbf{x}^{(k+1)} = -\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathcal{F}(\mathbf{x}^{(k)})$

At each iterations

- Newton solves: $\delta \mathbf{x}^{(k+1)} = -\left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}} + Q(\mathbf{x}^{(k)})\right)^{-1}\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)})$
- Gauss-Newton solves: $\delta \mathbf{x}^{(k+1)} = -\left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}}\right)^{-1}\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)}) = \mathbf{F}_{\mathbf{x}^{(k)}}^{+}F(\mathbf{x}^{(k)})$

At each iterations

• Newton solves: $\delta \mathbf{x}^{(k+1)} = -\left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}} + Q(\mathbf{x}^{(k)})\right)^{-1}\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)})$

• Gauss-Newton solves: $\delta \mathbf{x}^{(k+1)} = -\left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}}\right)^{-1}\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)}) = \mathbf{F}_{\mathbf{x}^{(k)}}^{+}F(\mathbf{x}^{(k)})$

Under several conditions, Gauss Newton will converge toward a minimum of the original problem if $\exists \eta^{(k)} < 1$:

$$\left\| \left(\mathsf{F}_{\mathsf{x}^{(k)}}^{\mathsf{T}} \mathsf{F}_{\mathsf{x}^{(k)}} \right)^{-1} Q(\mathsf{x}^{(k)}) \right\|_{2} \leq \eta^{(k)}$$

э

At each iterations

• Newton solves: $\delta \mathbf{x}^{(k+1)} = -\left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}} + Q(\mathbf{x}^{(k)})\right)^{-1}\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)})$

• Gauss-Newton solves: $\delta \mathbf{x}^{(k+1)} = -(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}} \mathbf{F}_{\mathbf{x}^{(k)}})^{-1} \mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}} F(\mathbf{x}^{(k)}) = \mathbf{F}_{\mathbf{x}^{(k)}}^{+} F(\mathbf{x}^{(k)})$ Under several conditions, Gauss Newton will converge toward a minimum of the original problem if $\exists \eta^{(k)} < 1$:

$$\left\| \mathbf{I} - \left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathcal{T}} \mathbf{F}_{\mathbf{x}^{(k)}} \right)^{-1} \left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathcal{T}} \mathbf{F}_{\mathbf{x}^{(k)}} + Q(\mathbf{x}^{(k)}) \right) \right\|_{2} \leq \eta^{(k)}$$

At each iterations

• Newton solves: $\delta \mathbf{x}^{(k+1)} = -\left(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\mathbf{F}_{\mathbf{x}^{(k)}} + Q(\mathbf{x}^{(k)})\right)^{-1}\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)})$

• Gauss-Newton solves: $\delta \mathbf{x}^{(k+1)} = -(\mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}} \mathbf{F}_{\mathbf{x}^{(k)}})^{-1} \mathbf{F}_{\mathbf{x}^{(k)}}^{\mathsf{T}} F(\mathbf{x}^{(k)}) = \mathbf{F}_{\mathbf{x}^{(k)}}^{+} F(\mathbf{x}^{(k)})$ Under several conditions, Gauss Newton will converge toward a minimum of the original problem if $\exists n^{(k)} < 1$:

$$\left\| \mathsf{I} - \left(\mathsf{F}_{\mathsf{x}^{(k)}}^{\mathcal{T}} \mathsf{F}_{\mathsf{x}^{(k)}} \right)^{-1} \left(\mathsf{F}_{\mathsf{x}^{(k)}}^{\mathcal{T}} \mathsf{F}_{\mathsf{x}^{(k)}} + Q(\mathsf{x}^{(k)}) \right) \right\|_{2} \leq \eta^{(k)}$$

In practice further approximations are made (lower resolution, simplified physics, CERA, 3DFgat, ...), the approximate Gauss-Newton iteration then solves

$$\widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}}^{\mathsf{T}}\widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}}\delta\mathbf{x}^{(k+1)} = -\widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}}^{\mathsf{T}}F(\mathbf{x}^{(k)})$$

One can show that for such an approximation of the cost function, this sufficient condition becomes

$$\left\| \mathbf{I} - \left(\widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}}^{\mathcal{T}} \widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}} \right)^{-1} \left(\widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}}^{\mathcal{T}} \mathbf{F}_{\mathbf{x}^{(k)}} + \widetilde{Q}(\mathbf{x}^{(k)}) \right) \right\|_{2} \leq \eta^{(k)}$$

But the minimum is not the same as the original problem

$$\|\tilde{\mathbf{x}}^* - \mathbf{x}^*\|_2 \leq \frac{1}{1-\nu} \left\| \left(\widetilde{\mathbf{F}}_{\tilde{\mathbf{x}}^*}^+ - \mathbf{F}_{\tilde{\mathbf{x}}^*}^+ \right) F(\tilde{\mathbf{x}}^*) \right\|_2 = \frac{1}{1-\nu} \left\| \mathbf{F}_{\tilde{\mathbf{x}}^*}^+ F(\tilde{\mathbf{x}}^*) \right\|_2$$

 $(\mathbf{F}^{+} = \left(\mathbf{F}^{\mathcal{T}}\mathbf{F}\right)^{-1}\mathbf{F}^{\mathcal{T}})$

In the linear case the above sufficient condition becomes necessary.

One can show that for such an approximation of the cost function, this sufficient condition becomes

$$\left\| \mathbf{I} - \left(\widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}}^{\mathcal{T}} \widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}} \right)^{-1} \left(\widetilde{\mathbf{F}}_{\mathbf{x}^{(k)}}^{\mathcal{T}} \mathbf{F}_{\mathbf{x}^{(k)}} + \widetilde{Q}(\mathbf{x}^{(k)}) \right) \right\|_{2} \leq \eta^{(k)}$$

But the minimum is not the same as the original problem

$$\|\tilde{\mathbf{x}}^* - \mathbf{x}^*\|_2 \leq \frac{1}{1-\nu} \left\| \left(\widetilde{\mathbf{F}}_{\tilde{\mathbf{x}}^*}^+ - \mathbf{F}_{\tilde{\mathbf{x}}^*}^+ \right) F(\tilde{\mathbf{x}}^*) \right\|_2 = \frac{1}{1-\nu} \left\| \mathbf{F}_{\tilde{\mathbf{x}}^*}^+ F(\tilde{\mathbf{x}}^*) \right\|_2$$

 $(\mathbf{F}^{+} = \left(\mathbf{F}^{\mathcal{T}}\mathbf{F}\right)^{-1}\mathbf{F}^{\mathcal{T}})$

In the linear case the above sufficient condition becomes necessary.

As a summary all what matters is:

how good
$$\widetilde{F}_x = \begin{pmatrix} B^{-1/2} \\ R^{-1/2} H_x \widetilde{M}_x \end{pmatrix}$$
 is an approximation of $F_x = \begin{pmatrix} B^{-1/2} \\ R^{-1/2} H_x M_x \end{pmatrix}$.

Back to the first question Is it worth replacing 3DFgat by 4DVAR in CERA20C's ocean component?

3

イロト イポト イヨト イヨト

Back to the first question Is it worth replacing 3DFgat by 4DVAR in CERA20C's ocean component?

the answer is no ...

A. Vidard (Inria)

ERACLIM2 General Assembly

Bern, 12th of December 2017 5

э

(日) (同) (三) (三)

Back to the first question Is it worth replacing 3DFgat by 4DVAR in CERA20C's ocean component?

the answer is no ...

It just does not change a bit ...

A. Vidard (Inria)

(日) (同) (三) (三)

ORCA 1, One day assimilation window, T and S assimilation

4Dvar - 3Dvar (1 day) difference T300 increment

ORCA 1, 30 day assimilation window, T and S assimilation

Considering the standard inner loop's incremental formulation:

$$J^{k}(\delta \mathbf{x}^{(k)}) = \left(\delta \mathbf{x}^{(k)} + \sum_{l=1}^{(k-1)} \delta \mathbf{x}^{(l)} \right)^{T} \mathbf{B}^{-1} \left(\delta \mathbf{x}^{(k)} + \sum_{l=1}^{(k-1)} \delta \mathbf{x}^{(l)} \right) \\ + \sum_{i=0}^{N} \left(\mathbf{H}_{t_{i}}^{(k-1)} \tilde{\mathbf{M}}_{t_{i}}^{(k-1)} \delta \mathbf{x}^{(k)} - \mathbf{d}_{t_{i}}^{(k-1)} \right)^{T} \mathbf{R}_{t_{i}}^{-1} \left(\mathbf{H}_{t_{i}}^{(k-1)} \tilde{\mathbf{M}}_{t_{i}}^{(k-1)} \delta \mathbf{x}^{(k)} - \mathbf{d}_{t_{i}}^{(k-1)} \right)$$

How good our approximation of the "true" F (i.e. HM) is? For 3D-Var ($\tilde{M} = I$) and 4D-Var (\tilde{M} includes some approximations as well)?

э

(日) (同) (三) (三)

Approximation in the linear propagator

æ

Approximation in the linear propagator

- ∢ ⊒ →

æ

▲ 伊 ▶ ▲ 臣 ▶

ORCA 025, One day assimilation window, T,S and SSH assimilation

4Dvar - 3Dvar (1 day) T300 increment difference

ORCA 025, 5 day assimilation window, T,S and SSH assimilation

4Dvar - 3Dvar (5 days) T300 increment difference

There are potential interest to use 4DVar for longer assimilation windows / higher resolution, but it comes at a cost:

Orca1, 10 iteration, 1 node:

1day:

4dvar: 12mn (17mn) 3dvar: 6mn (11mn)

Orca025, 5 iteration, 6 nodes:

5 day:

4dvar: 7h (9h) 3dvar: 45mn (2h45) 10days:

4dvar: 48mn (1h) 3dvar: 6mn (16mn)

(日) (同) (三) (三)

Simplified 4Dvar Do we really need a full tangent model?

$$\frac{\partial \delta T}{\partial t} = -\nabla . (\delta T \mathbf{U}) + \delta D^{vT}$$
$$\delta D^{vT} = \frac{\partial}{\partial z} \left(A^{vT} \frac{\partial \delta T}{\partial z} \right)$$

A. Vidard (Inria)

ERACLIM2 General Assembly

Bern, 12th of December 2017 14 / 25

æ

Simplified 4Dvar

Single temperature observation (10d assimilation window)

Multi incremental 4Dvar

Do we really need a full resolution?

ORCA025 for the direct model, ORCA1 for the tangent model. Perturbations generated at coarse resolution.

Interpolation: observation operator

simplification: its weighted ajoint.

Approximation in the linear propagator

Multi incremental 4Dvar

4dvar: 45mn 3dvar: 2mn

A. Vidard (Inria)

3dvar: 45mn (2h45)

ERACLIM2 General Assembly

Bern, 12th of December 2017

э

Back to the second question Can we improve coupled consistency through data assimilation?

2

イロン イヨン イヨン イヨン

Back to the second question Can we improve coupled consistency through data assimilation?

the answer is yes, probably ...

A. Vidard (Inria)

ERACLIM2 General Assembly

Bern, 12th of December 2017 18 /

3

イロン イヨン イヨン イヨン

Back to the second question Can we improve coupled consistency through data assimilation?

the answer is yes, probably ...

but at a cost ...

A. Vidard (Inria)

ERACLIM2 General Assembly

Bern, 12th of December 2017 18 /

э

OA coupling is a complex matter with many sources of uncertainties

- time/space non-confomity
- interfaces may actually not be represented by any component
- multi physics with different characteristics.
- highly parameterised interface (Bulk formulae)
- coupling methods

Some of theses uncertainties are unavoidable, some others are linked to the way we implement things.

Coupled DA is an opportunity to account for or reduce them

^{• ...}

Focus on flux consistency

The SWR algorithm reads :

$$\begin{cases} \mathcal{L}_{a}(u_{a}^{k}) = f_{a} & \text{on } \Omega_{a} \times T_{W} \\ u_{a}^{k}(z,0) = u_{0}(z) & z \in \Omega_{a} \\ \mathcal{C}_{a}(u_{a}^{k}) = \mathcal{F}_{oa}(u_{a}^{k}, u_{o}^{k-1}) & \text{on } \Gamma \times T_{W} \end{cases} \begin{cases} \mathcal{L}_{o}(u_{o}^{k}) = f_{o} & \text{on } \Omega_{o} \times T_{W} \\ u_{o}^{k}(z,0) = u_{0}(z) & z \in \Omega_{o} \\ \mathcal{C}_{o}(u_{o}^{k}) = \mathcal{F}_{oa}(u_{a}^{k}, u_{o}^{k}) & \text{on } \Gamma \times T_{W} \end{cases}$$

where $T_{W} = [t_{i}; t_{i+1}]$

• At convergence, it provides a flux consistent solution : $C_a(u_a) = C_o(u_o)$ on $\Gamma \times T_W$

< 口 > < 同

For a fistful of algorithms

• Fully coupled models. $\mathbf{x} = u_0(z), z \in \Omega$

$$J_{FCM}(\mathbf{x}) = \left(\mathbf{x} - \mathbf{x}^{b}\right)^{T} \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}^{b}\right) + \sum_{i=0}^{N} \left(\mathcal{H}_{t_{i}}(\mathcal{M}_{t_{i}}(\mathbf{x})) - \mathbf{y}_{t_{i}}^{o}\right)^{T} \mathbf{R}_{t_{i}}^{-1} \left(\mathcal{H}_{t_{i}}(\mathcal{M}_{t_{i}}(\mathbf{x})) - \mathbf{y}_{t_{i}}^{o}\right)$$

• Partially coupled models. $\mathbf{x}_0 = (u_0(z), u_o^0(0, t))^T$, $z \in \Omega$, $t \in [0, T]$

$$J_{PCM}(\mathbf{x}) = J^{b}(\mathbf{x}) + \sum_{i=0}^{N} \left(\mathcal{H}_{t_{i}}(\mathcal{M}_{t_{i}}^{trunc}(\mathbf{x})) - \mathbf{y}_{t_{i}}^{o} \right)^{T} \mathbf{R}_{t_{i}}^{-1} \left(\mathcal{H}_{t_{i}}(\mathcal{M}_{t_{i}}^{trunc}(\mathbf{x})) - \mathbf{y}_{t_{i}}^{o} \right) + J^{s}(\mathbf{x})$$

- Weakly coupled models. $\mathbf{x}_0 = (u_0(z), u_o^0(0, t), u_a^0(0, t))^T, z \in \Omega, t \in [0, T]$ $J_{WCM}(\mathbf{x}) = J_a^b(\mathbf{x}_a) + J_o^b(\mathbf{x}_o) + J_a^o(\mathbf{x}_a) + J_o^o(\mathbf{x}_o) + J^s(\mathbf{x})$
- and obviously CERA (uncoupled in the inner loop). $\mathbf{x} = u_0(z), \ z \in \Omega$

$$J^{\mathfrak{s}}(\mathbf{x}) = \gamma \|\mathcal{C}_{\mathfrak{a}}(u_{\mathfrak{a}}(0,t)) - \mathcal{C}_{\mathfrak{o}}(u_{\mathfrak{o}}(0,t))\|_{[0,T]}^2$$

(日) (同) (三) (三)

Stand-alone SCM

Figure: Colors represent zonal (a,c) and meridional (b,d) atmosphere wind and ocean current velocities components and black isolines represent temperatures.

$$\frac{\partial \mathbf{u}_{\beta}(z,t)}{\partial t} = -f\mathbf{k} \times \mathbf{u}_{\beta}(z,t) + \frac{\partial}{\partial z} \left(K_{m}^{\beta}(z) \frac{\partial \mathbf{u}_{\beta}(z,t)}{\partial z} \right) + F_{\mathbf{u}_{\beta}}(z,t) \quad \text{sur } \Omega_{\beta} \times [0,T]$$
$$\frac{\partial \mathbf{t}_{\beta}(z,t)}{\partial t} = \frac{\partial}{\partial z} \left(K_{s}^{\beta}(z) \frac{\partial \mathbf{t}_{\beta}(z,t)}{\partial z} \right) + F_{\mathbf{t}_{\beta}}(z,t) \quad \text{sur } \Omega_{\beta} \times [0,T]$$

where $\beta = a, o$ refer to atmosphere and ocean variables respectively. Both models use the same structure and differ from their forcing terms F_* , their interface conditions and the computation of their turbulent viscosity and diffusivity coefficients K_m^β and K_s^β .

A. Vidard (Inria)

ERACLIM2 General Assembly

Algorithm	γ	k _{max}	# of minimisation	Computing cost	Interface imbalance	RMSE improvement
			iterations	(relative to CERA)	indicator	(in %)
FCM-F	-	kcvg	26	3.8	2.10-12	74
CERA-F	-	k _{cvg}	24	1.1	5.810-12	24
CERA-1	-	1	26	1	1.6	40
CERA-1-SWR	-	1	26	1	5 10 ⁻²	45
PCM-1	0.1	1	25	0.96	4.10 ⁻³	60
WCM	0.1	0	31	1.2	6.10-3	57

Table: Result summary for the SCM system (limited to 2 outer loops)

Figure: Forecast of SSU and SSV from FCM-F, CERA-1 and WCM analysis. Dashed and plain black lines are background and truth evolutions respectively

In the previous frame, we were limited to 2 outer loops, due to non convergence of CERA. Adding the J^s term sorts this out

In the previous frame, we were limited to 2 outer loops, due to non convergence of CERA. Adding the J^s term sorts this out But we can inflate **B** to make CERA converge

The outer/inner loop framework allows for approximation

- their impact can be studied theoretically
- they can (should?) be specific for a given application
- they can be (partially) accounted for by modifying the cost function

In addition to deliverables

- 4DVar, simplistic 4DVar and multigrid 4DVar are available in Nemovar repository
- a stand alone single column will soon be available along with its OOPs interfaces

(日) (同) (三) (三)