Ensemble \mathbf{B} in NEMOVAR

A. Weaver¹ M. Chrust², B. Ménétrier³, A. Piacentini¹, J. Tshimanga¹, Y. Yang⁴, S. Gürol¹ and H. Zuo²

> ¹CERFACS ²ECMWF ³Météo-France ⁴IRIT/CERFACS

December 12, 2017

PROJECT DELIVERABLE

- Work Package 2: Future coupling methods
- Deliverable 2.3: Using ensemble-estimated background error variances and correlation scales in the NEMOVAR system

Type: Documented code and test results

Author(s): Anthony Weaver (CERFACS), Marcin Chrust (ECMWF), Benjamin Ménétrier (Météo-France), Andrea Piacentini (CERFACS), Jean Tshimanga (CERFACS), Yin Yang (IRIT/CERFACS), Selime Gürol (CERFACS) and Hao Zuo (ECMWF)

- Reviewer: Matthew Martin (WP2 leader)
- Delivered: 30/11/2017

Outline

- 2 Summary of developments
- 3 Using ensembles to estimate B
- Improving B for future reanalyses

Diagnostics from ORAS4

- There are discrepencies between the specified and expected background-error standard deviations (blue and red curves, resp.).
- The specified **B** (same one used in CERA) does not "see" the observing system (**black curve**).
- Improved estimation and modelling methods for **B** are needed.

Outline

2 Summary of developments

3 Using ensembles to estimate B

Brief summary of developments

ZCFRFACS

- Two methods have been developed to use ensembles to define **B**.
 - Estimate parameters of the modelled covariance matrix.
 - Ocmpute a low-rank sample estimate of the covariance matrix and localize it (EnVar).
- Hybrid formulations of both 1 and 2 have also been developed.
- 1 and 2 include optimally-based algorithms for filtering and estimating parameters.
- All methods have been included in a new version of NEMOVAR (v5) in the central source code repository at ECMWF.
- The new version has been integrated into the ECMWF scripting environment for running reanalysis experiments.
- Validation experiments have been performed using both ORCA1 and ORCA025 global configurations.

Validation of the new version of NEMOVAR (v5) **Z**CERFACS

RMS of OmA (solid) and OmB (dashed) from 6-month experiment with ORCA1 Old (v3.4) and New (v5) NEMOVAR with "same" parameters

The NEMOVAR **B** formulation in v5

Z CFRFACS

$$\mathbf{B} = \underbrace{\left(\mathbf{B}_{\mathrm{m}_{1}} + \mathbf{B}_{\mathrm{m}_{2}} + \dots\right)}_{\mathbf{B}_{\mathrm{m}}} + \mathbf{B}_{\mathrm{e}} + \mathbf{B}_{\mathrm{EOF}}$$

(where the terms are weighted by diagonal matrices $\Upsilon_{
m m}$, $\Upsilon_{
m e}$ and $\Upsilon_{
m EOF}$)

• Multiple covariance models for representing different scales:

$$\mathbf{B}_{\mathrm{m}_{i}} \;=\; \mathbf{K}_{\mathrm{b}} \, \boldsymbol{\Upsilon}_{\mathrm{m}}^{1/2} \left(\mathbf{D}_{\mathrm{m}_{i}}^{1/2} \, \mathbf{C}_{\mathrm{m}_{i}} \, \mathbf{D}_{\mathrm{m}_{i}}^{1/2} \right) \boldsymbol{\Upsilon}_{\mathrm{m}}^{1/2} \, \mathbf{K}_{\mathrm{b}}^{\mathrm{T}}$$

• A localized ensemble-based covariance matrix:

$$\boldsymbol{\mathsf{B}}_{\mathrm{e}}\ =\ \boldsymbol{\mathsf{K}}_{\mathrm{b}}\,\boldsymbol{\Upsilon}_{\mathrm{e}}^{1/2}\,\boldsymbol{\mathsf{D}}_{\mathrm{e}}^{1/2}\left(\boldsymbol{\mathsf{C}}_{\mathrm{L}}\circ\widetilde{\boldsymbol{\mathsf{X}}}\,\widetilde{\boldsymbol{\mathsf{X}}}^{\mathrm{T}}\right)\boldsymbol{\mathsf{D}}_{\mathrm{e}}^{1/2}\,\boldsymbol{\Upsilon}_{\mathrm{e}}^{1/2}\,\boldsymbol{\mathsf{K}}_{\mathrm{b}}^{\mathrm{T}}$$

where the columns of $\widetilde{\textbf{X}} = \textbf{D}_{\rm e}^{-1/2}\,\textbf{K}_{\rm b}^{-1}\,\textbf{X}^{\rm b}$ are unbalanced, normalized background ensemble perturbations.

• A large-scale EOF-based covariance matrix for assimilating sparse observations (D. Lea; part of Deliverable 2.1):

$$\mathsf{B}_{_{\mathrm{EOF}}} \;=\; \Upsilon^{1/2}_{_{\mathrm{EOF}}}\,\mathsf{P}\,\Lambda\,\mathsf{P}^{\mathrm{T}}\,\Upsilon^{1/2}_{_{\mathrm{EOF}}}$$

A revised correlation operator

ZCERFACS

- The correlation operator, localization operator and parameter filter are based on an algorithm that involves solving an implicitly formulated diffusion equation.
- The diffusion model has been completely revised to make it more general, to eliminate numerical artefacts near complex boundaries, and to improve computational efficiency and scalability on high-performance computers (Weaver *et al.*, 2016; 2017).

Outline

Motivation

- 2 Summary of developments
- \bigcirc Using ensembles to estimate B
- Improving B for future reanalyses

- Using ensembles to estimate parameters in $B_{\rm m}$ Σ CERFACS
- Ensemble perturbations are used to estimate the variance matrix (D), as well as the diffusion tensor (κ) associated with the diffusion operator in C.
- To remove sampling error with small ensemble sizes, the raw estimates are filtered using a diffusion operator with an optimally-based algorithm to determine the filtering scale (Ménétrier *et al.* 2015; Michel *et al.* 2016).
- A hybrid parameter formulation has also been developed:

where $D_{\rm m}$ (resp., $D_{\rm e}$) and $\kappa_{\rm m}$ (resp., $\kappa_{\rm e}$) are modelled (resp., ensemble) estimates, and $\alpha_{\rm m.e}^2$ and $\gamma_{\rm m.e}^2$ are constant weights.

• The spatially averaged hybrid parameters are fixed to a reference value (either the spatially averaged modelled or spatially averaged ensemble values).

 $\begin{aligned} \mathbf{D}_{\rm h} &= \, \alpha_{\rm m}^2 \, \mathbf{D}_{\rm m} \, + \, \alpha_{\rm e}^2 \, \mathbf{D}_{\rm e} \\ \boldsymbol{\kappa}_{\rm h}^{-1} &= \, \gamma_{\rm m}^2 \, \boldsymbol{\kappa}_{\rm m}^{-1} \, + \, \gamma_{\rm e}^2 \, \boldsymbol{\kappa}_{\rm e}^{-1} \end{aligned}$

Optimal spatial filtering

• The optimality criteria of Ménétrier *et al.* (2015) translate into the following requirements on the design of the spatial filter:

$$\begin{array}{rcl} \mu^{\mathrm{S}}[\widehat{\mathbf{v}}] &=& \mu^{\mathrm{S}}[\widetilde{\mathbf{v}}] \\ \mathcal{C} &=& 0 \end{array} \right\}$$

ZCFRFACS

where $\tilde{\mathbf{v}}$ and $\hat{\mathbf{v}}$ are the raw and filtered variances, and μ^{S} is spatial average. • For Gaussian (G) statistics:

$$\mathcal{C}^{\mathrm{G}} = \mu^{\mathrm{S}}[\widetilde{\mathbf{v}} \circ \widetilde{\mathbf{v}}] - \left(rac{N_{\mathrm{e}} + 1}{N_{\mathrm{e}} - 1}
ight) \mu^{\mathrm{S}}[\widetilde{\mathbf{v}} \circ \widehat{\mathbf{v}}].$$

• For Non-Gaussian (NG) statistics:

$$egin{aligned} \mathcal{C}^{ ext{NG}} &= \mu^{ ext{S}}[\,\widetilde{oldsymbol{v}}\circ\widetilde{oldsymbol{v}}\,] \,-\, rac{N_{ ext{e}}(N_{ ext{e}}-2)(N_{ ext{e}}-3)}{(N_{ ext{e}}-1)(N_{ ext{e}}^2-3N_{ ext{e}}+3)} \mu^{ ext{S}}[\,\widetilde{oldsymbol{arkappa}}\,] \ &-\, rac{N_{ ext{e}}^2}{(N_{ ext{e}}-1)(N_{ ext{e}}^2-3N_{ ext{e}}+3)} \mu^{ ext{S}}[\,\widetilde{oldsymbol{arkappa}}\,] \end{aligned}$$

where $\widetilde{\boldsymbol{\xi}}$ is the raw fourth-order moment.

Optimal spatial filtering

CERFACS

ERA-CLIM2 4th General Assembly, University of Bern, 12-14 December 2017

Variances

11-member ensemble (10 perturbed + 1 unperturbed) from 04/06/2011. Background T error standard deviations at 100 m.

Estimating the diffusion tensor κ from ensembles Σ CERFACS

 κ⁻¹ can be related to the local correlation tensor (LCT) *H* (Chorti and Hristopulos 2008; Weaver and Mirouze 2013):

$$\left(rac{1}{2M-d-2}
ight)oldsymbol{\kappa}^{-1} = -
abla
abla^{ ext{T}}oldsymbol{c}_{d}ig|_{r=0} = oldsymbol{H}$$

where c_d is the analytical form of the (Matérn) correlation function in \mathbb{R}^d .

H can be approximated locally using ensemble perturbations ε(z) (Michel 2013; Michel *et al.* 2016):

$$\widetilde{\mathbf{H}}(\mathbf{z}) = \overline{
abla \widetilde{\epsilon}(\mathbf{z}) \left(
abla \widetilde{\epsilon}(\mathbf{z})
ight)^{\mathrm{T}}}$$
 where $\widetilde{\epsilon}(\mathbf{z}) = \epsilon(\mathbf{z}) / \sigma(\mathbf{z})$

• \tilde{H}^{-1} is a tensor of "squared length-scales":

$$\widetilde{\boldsymbol{\textit{H}}}^{-1} = \boldsymbol{\textit{R}} \, \boldsymbol{\textit{L}} \, \boldsymbol{\textit{R}}^{ ext{T}}$$

where **R** a rotation matrix, and $\mathbf{L} = \text{diag}(L_1^2, \ldots, L_d^2)$ where L_1 etc are the length-scales along the principal axes.

Estimated horizontal correlation scales

Background T error scales at 100 m

Estimated vertical correlation scales

Background T error vertical scales at 5 m

- Parameterizing the vertical length-scales in terms of the mixed-layer depth makes sense.
- Such a parameterization is available in NEMOVAR but has not been used at ECMWF.

Impact of ensemble and hybrid variances

RMS of OmA (solid) and OmB (dashed) for **temperature** from 6-month experiment in ORCA025

ZCERFACS

Impact of ensemble and hybrid variances

RMS of OmA (solid) and OmB (dashed) for **salinity** from 6-month experiment in ORCA025

ZCERFACS

ensemble-only (15 members); hybrid (0.5, 0.5); parameterized-only

Using ensembles to estimate $B_{\rm e}$

• Different formulations of the localization operator have been developed.

▲ CERFACS

• Localization functions and hybrid weights are estimated simultaneously using the hdiag_nicas software (B. Ménétrier).

Correlation (black) and localization (colors)

Hybrid correlations from NEMOVAR

Example of T-T correlations using two different ensembles sizes (10 and 50)

▲ CERFACS

Outline

1 Motivation

- 2 Summary of developments
- 3 Using ensembles to estimate B
- Improving B for future reanalyses

Improving ${\bf B}$ for future reanalyses

- Several options have been developed for defining **B** from ensembles.
- Computational cost is a determining factor.
- A three-step strategy for progressively improving **B**:
 - Flow-dependent ensemble-derived variances
 - * Low cost-overhead; ensemble-only or hybrid; tuning inflation factor and hybrid weights; improving ensemble-generation procedure

Z CFRFACS

- ★ Include sea-ice concentration
- 2 Climatological ensemble-derived correlation scales
 - Ensemble horizontal scales combined with flow-dependent MLD-dependent vertical scales; efficient normalization; ensemble gradient-method or function-fitting approach (hybrid_nicas)
- Optimization States States 1 2018 201
 - $\label{eq:basic} \star \mbox{ Climatological ensemble-derived $B_{\rm m}$; efficient localization in $B_{\rm e}$ (hybrid_nicas); opens the way to coupled (cross-domain) covariances. }$
- Continued efforts are needed to improve the computational efficiency and scalability of the diffusion operator.

Estimating the horizontal tensor through function fitting **Z**CERFACS

Results obtained with the hdiag_nicas software (B. Ménétrier)

Fitted LCT

