Drought Monitoring and Prediction Using Sub-Seasonal Predictions

Yuhei Takaya and Munehiko Yamaguchi

Meteorological Research Institute
Japan Meteorological Agency

Acknowledgements
This study was supported by JAXA RA8 and JSPS KAKENHI (JP17K14395, JP17K01223).
Persistent drought and flood create adverse results in various sectors, especially agriculture.

The aim of this study is to develop drought(/flood) monitoring and prediction capability using near real-time precipitation and atmospheric analysis as well as subseasonal predictions.
Analysis data

Atmospheric analysis: JRA-55 (Kobayashi et al. 2015)

Version: GSMaP NRT Version 6

http://sharaku.eorc.jaxa.jp/GSMaP/
Prediction data

<table>
<thead>
<tr>
<th></th>
<th>JMA</th>
<th>ECMWF</th>
<th>UKMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td>Hindcast data</td>
<td></td>
</tr>
<tr>
<td>Model Resolution</td>
<td>T319L60</td>
<td>T639/319/L91*</td>
<td>N96L85</td>
</tr>
<tr>
<td>Freq.</td>
<td>3/month</td>
<td>2/weekly</td>
<td>4/month</td>
</tr>
<tr>
<td>Ens. Size</td>
<td>5</td>
<td>11</td>
<td>3</td>
</tr>
</tbody>
</table>

(*T639 up to day 15 and T319 after day 15)

https://www.ecmwf.int/en/research/projects/s2s
Methods: Keetch—Byram drought index (KBDI)

Drought index

The Keetch—Byram drought index (KBDI, Keetch and Byram, 1968) was used in this study. The index estimates the soil moisture deficit, thus it is a useful indicator of drought conditions and wildfire risks. The index was calculated using meteorological variables by taking into account evaporation and plant transpiration.

\[
KBDI_t^t = \frac{KBDI_{t-1}}{\text{KBDI 1-day before}} + \frac{DF_t}{\text{evaporation transpiration}} - \frac{RF_t}{\text{rainfall}}
\]

- Rainfall amount & daily maximum surface temperature
KBDI monthly climatology (2001-2013)

KBDI was calculated with GSMaP precipitation and JRA-55 Ts.
Predictive skill of KBDI (ECMWF model)

Rank correlations (Kendall’s τ) between observations and predictions with a 28-day lead. Four consecutive 11-member ensemble mean predictions 7 days apart starting from dates denoted above figures were verified.

KBDI predictive skills are generally high in the tropics including South and Southeast Asia.
Skill improvement over persistent anomaly predictions

Same as the previous slide, but for rank correlation difference between model predictions and persisted anomaly predictions.
Anomaly correlation coefficient: JMA control prediction, JJA

Week 1
7-day Accumulated Rain

Week 2
7-day Accumulated Rain

Week 3
7-day Accumulated Rain

Week 4
7-day Accumulated Rain
Models generally overperform climatological predictions up to at least 10-day lead, however, the model performance is a key to make a meaningful forecast.
Indonesian drought and ENSO/IOD

Source: Bureau of Meteorology

cf. Lyon and Barnston 2005

Source: NOAA

cf. Pan et al. 2018,
Case study: 2006

Early dry season

ECMWF predictions early (15Jun, 13Jul) and late (31Oct, 17Nov) dry seasons in 2006. Thick lines: control members, thin lines: perturbed members.

Late dry season

Case study: 2010

Early dry season

ECMWF predictions early (15Jun, 13Jul) and late (31Oct, 17Nov) dry seasons in 2010. Thick lines: control members, thin lines: perturbed members.

Late dry season

2010: Strong negative IOD
Skill enhancement due to ENSO and IOD

Improvement rate of ECMWF forecasts over climatology (%; RMSE)

Improvement rates are larger when both NINO3 and Dipole Mode Index (DMI) are both large positive value (i.e., 2006 and 2015)
Summary

• New products to monitor and predict the risk of drought based on the KBDI were developed using GSMaP, JRA-55 and S2S data.
• Skill evaluations of KBDI showed benefits of using S2S model outputs in some regions.
• Drought forecast in Indonesia is expected to provide useful information for decision making disaster risk managements.
• The subseasonal KBDI predictability arises from slow-varying SST conditions (IOD and El Nino), in addition to the subseasonal variability (e.g., MJO).

• For the drought prediction, substantial prediction information provided from the real-time monitoring capability, S2S models could add information/value to monitoring products.