Representation of air-sea interactions on an idealised coupled atmosphere-ocean model with focus on the Western Baltic Sea

3rd Workshop on Physics Dynamics Coupling – PDC18

ECMWF, Reading (UK)

Tobias Bauer (TROPOS), Olaf Hellmuth (TROPOS)
✉ tobias.bauer@tropos.de
July 11, 2018
Contents

1 Coastal upwelling in Western Baltic Sea

2 Air-sea interactions: ICON & GETM

3 Idealised atmosphere-ocean model

4 Conclusions & Outlook
Coastal upwelling – coast of Poland: May 25 – Jun 08, 2008

Sea surface temperature western Baltic Sea – May/June 2008

Wind map of central Europe at 6am UTC
Motivation: coastal upwelling
Air-sea interactions: ICON & GETM
Idealised model
Conclusions & Outlook

What happens at the water surface?

Linking of atmosphere and ocean via transfer of heat and momentum and gas exchange, i.e.

- Waves and currents in the ocean caused by wind
- Dissolution of greenhouse gases like carbon dioxide into the ocean
- Heat absorption (due to radiation) and emission by the ocean
How are atmosphere and ocean models online coupled?

- Atmosphere
- Ocean

- Surface fluxes of momentum, heat and radiation, precipitation, etc.
- Sea surface temperature, evaporation, etc.

• Which variables will be exchanged?
• Which time intervals will be suitable for a data exchange?
• Which interpolation method will best fit for a data exchange?
How are atmosphere and ocean models online coupled?

- Atmosphere
- Ocean
- Coupler

- Which variables will be exchanged?
- Which time intervals will be suitable for a data exchange?
- Which interpolation method will best fit for a data exchange?
How are atmosphere and ocean models online coupled?

- Which variables will be exchanged?
- Which time intervals will be suitable for a data exchange?
- Which interpolation method will best fit for a data exchange?
How are atmosphere and ocean models online coupled?

- Which variables will be exchanged?
- Which time intervals will be suitable for a data exchange?
- Which interpolation method will best fit for a data exchange?
Motivation: coastal upwelling

Air-sea interactions: ICON & GETM

Idealised model

Conclusions & Outlook

Coupling scheme for ICON and GETM

- **ICON**
 - ESMF
 - Local mass conservation by flux-form for continuity equation (Zängl et al., 2015)
 - Compressible non-hydrostatic set of equations on global domains
 - Data exchange: momentum and surface heat flux, evaporation, etc.
 - Horizontal interpolation of data at air-sea interface
 - Drying and flooding processes for coastal and estuarine domains
- **GETM**
 - Hydrostatic set of equations with Boussinesq approximation and eddy viscosity assumption (Burchard et al., 2004)
Coupling scheme for ICON and GETM

- Local mass conservation by flux-form for continuity equation
- Compressible non-hydrostatic set of equations on global domains

ICON

- Local mass conservation by flux-form for continuity equation

ESMF

GETM

- Compressible non-hydrostatic set of equations on global domains
- Data exchange: momentum and surface heat flux, evaporation, etc.
- Horizontal interpolation of data at air-sea interface
- Drying and flooding processes for coastal and estuarine domains

Zängl et al., 2015
Burchard et al., 2004
Coupling scheme for ICON and GETM

- Local mass conservation by flux-form for continuity equation
 - Zängl et al., 2015
- Compressible non-hydrostatic set of equations on global domains
- Drying and flooding processes for coastal and estuarine domains
- Hydrostatic set of equations with Boussinesq approximation and eddy viscosity assumption
 - Burchard et al., 2004
Coupling scheme for ICON and GETM

- Local mass conservation by flux-form for continuity equation
 [Zängl et al., 2015]
- Compressible non-hydrostatic set of equations on global domains
- Data exchange: momentum and surface heat flux, evaporation, etc.
- Horizontal interpolation of data at air-sea interface
- Drying and flooding processes for coastal and estuarine domains
- Hydrostatic set of equations with Boussinesq approximation and eddy viscosity assumption
 [Burchard et al., 2004]
Air-sea interactions: ICON & GETM – uncoupled

\[\theta \]
\[|v| \]

ICON

\[\theta \] potential temperature

\[|v| \] wind

GETM

\[\theta \] potential temperature

\[|v| \] wind

Tobias Bauer (tobias.bauer@tropos.de)
Air-sea interactions: ICON & GETM – uncoupled

\[P: \text{precipitation} \]
\[T_{\text{air}} : \text{air temperature} \]
\[SST : \text{sea surface temperature} \]
\[\theta : \text{potential temperature} \]
\[u_{10}/v_{10} : \text{u/v-wind at 10 m} \]
\[|v| : \text{wind} \]
\[p_{\text{air}} : \text{air pressure} \]

\[\theta \]
\[v \]
\[\text{ICON} \]
\[u_{10}, v_{10} \]
\[P \]
\[T_{\text{air}}, p_{\text{air}} \]
\[\text{SST} \]
\[\text{GETM} \]

Tobias Bauer (tobias.bauer@tropos.de)
Realisation of air-sea interactions in ICON & GETM

ICON:

Momentum:
\[
\tau_s^x = -\rho \cdot C_m^d \cdot |v| \cdot u \\
\tau_s^y = -\rho \cdot C_m^d \cdot |v| \cdot v
\]

Heat:
\[
Q = Q_s + Q_l + Q_b + Q_{SW}
\]

GETM:

Momentum:
\[
\tau_s^x = \rho \cdot C_m^d \cdot |v| \cdot u \\
\tau_s^y = \rho \cdot C_m^d \cdot |v| \cdot v
\]

Heat:
\[
Q = Q_s + Q_l + Q_b
\]
Realisation of air-sea interactions in ICON & GETM

ICON:

Momentum: \(\tau^x_s = -\rho \cdot C_m^d \cdot |v| \cdot u \)
\(\tau^y_s = -\rho \cdot C_m^d \cdot |v| \cdot v \)

Heat: \(Q = Q_s + Q_l + Q_b + Q_{SW} \)

No mass exchange with ocean via precipitation and evaporation due to exact local mass conservation.

GETM:

Momentum: \(\tau^x_s = \rho \cdot C_m^d \cdot |v| \cdot u \)
\(\tau^y_s = \rho \cdot C_m^d \cdot |v| \cdot v \)

Heat: \(Q = Q_s + Q_l + Q_b \)

Considering of precipitation and evaporation for salinity flux.
Air-sea interactions: ICON & GETM – uncoupled

\[\theta, \text{SST} \]

ICON

\[u_{10}, v_{10}, P, T_{\text{air}}, p_{\text{air}} \]

GETM

- \(P \): precipitation
- \(T_{\text{air}} \): air temperature
- \(\text{SST} \): sea surface temperature
- \(\theta \): potential temperature
- \(u_{10}/v_{10} \): \(u/v \)-wind at 10 m
- \(|v| \): wind
- \(p_{\text{air}} \): air pressure
Air-sea interactions: ICON & GETM – coupled

\[\begin{align*}
\theta & : \text{potential temperature} \\
|v| & : \text{wind} \\
u_{10}, v_{10} & : \text{u/v-wind at 10 m} \\
P & : \text{precipitation} \\
p_{\text{air}} & : \text{air pressure} \\
T_{\text{air}} & : \text{air temperature} \\
SST & : \text{sea surface temperature} \\
\tau & : \text{shear stress} \\
E & : \text{evaporation} \\
Q_{\text{SW}} & : \text{solar short wave radiative flux} \\
Q_{\text{LW}} & : \text{terrestrial long wave radiative flux} \\
Q_{b} & : \text{long wave net radiative flux} \\
\tau & : \text{shear stress} \\
E & : \text{evaporation} \\
P & : \text{precipitation} \\
T_{\text{air}} & : \text{air temperature} \\
SST & : \text{sea surface temperature} \\
\theta & : \text{potential temperature} \\
u_{10}, v_{10} & : \text{u/v-wind at 10 m} \\
|v| & : \text{wind} \\
p_{\text{air}} & : \text{air pressure}
\end{align*}\]
Air-sea interactions: ICON & GETM – coupled

Motivation: coastal upwelling

Air-sea interactions: ICON & GETM

Idealised model

Conclusions & Outlook

Air-sea interactions Western Baltic Sea

Tobias Bauer (tobias.bauer@tropos.de)
Idealised atmosphere-ocean model: objectives

- Development of idealised model for
 1D: Studying mass, momentum and energy coupling between atmosphere and ocean with a water/air column model system
 2D: Constructing an idealised coupled model system with straight coast and upwelling favourable winds
 3D: Fully coupled idealised atmosphere-ocean experiment (Baltic Sea)
Idealised atmosphere-ocean model: objectives

- Development of idealised model for
 1D: Studying mass, momentum and energy coupling between atmosphere and ocean with a water/air column model system
 2D: Constructing an idealised coupled model system with straight coast and upwelling favourable winds
 3D: Fully coupled idealised atmosphere-ocean experiment (Baltic Sea)

- Utilising different coupling strategies
 a) Online coupling with coupler (e.g. ESMF)
 b) Derivation and application of numerical methods with multirate approaches for atmosphere-ocean models
Idealised atmosphere-ocean model: properties

- Mass and momentum conservation and energy consistency
- Unified parameterisation of air-sea interactions
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation
Idealised atmosphere-ocean model: properties

- Mass and momentum conservation and energy consistency
- Unified parameterisation of air-sea interactions
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation
1 Atmosphere components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)

Wacker et al., 2006, Bott, 2008
Idealised atmosphere-ocean model: continuity equation

1. **Atmosphere** components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)
 - Wacker et al., 2006, Bott, 2008

2. **Ocean** components: fresh water (f) and salinity (sa)
 - Burchard et al., 2004
Idealised atmosphere-ocean model: source and sink connections

Atmosphere
- d
- v
- l
- i
- r
- sn

Ocean
- sa
- f
Motivation: coastal upwelling

Air-sea interactions: ICON & GETM

Idealised model

Conclusions & Outlook

Idealised atmosphere-ocean model: source and sink connections

Air-sea interactions Western Baltic Sea

July 11, 2018

13 / 27

Water vapour (v):

\[l_v = -l_{v,l} - l_{v,i} - l_{v,r} \]

\[S_v = S_{f,v} \]
Idealised atmosphere-ocean model: source and sink connections

Water vapour (v):
\[I_v = -I_{v,l} - I_{v,i} - I_{v,r} \]
\[S_v = S_{f,v} \]

Liquid water (l):
\[I_l = I_{v,l} - I_{l,i} - I_{l,r} \]
Motivation: coastal upwelling

Air-sea interactions: ICON & GETM

Idealised model

Conclusions & Outlook

Idealised atmosphere-ocean model: source and sink connections

Atmosphere

<table>
<thead>
<tr>
<th>Water vapour (v):</th>
<th>$I_v = -I_{v,l} - I_{v,i} - I_{v,r}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid water (l):</td>
<td>$I_l = I_{v,l} - I_{l,i} - I_{l,r}$</td>
</tr>
<tr>
<td>Ice (i):</td>
<td>$I_i = I_{v,i} + I_{l,i} - I_{i,sn}$</td>
</tr>
</tbody>
</table>

Ocean

<table>
<thead>
<tr>
<th>Water vapour (v):</th>
<th>$S_v = S_{f,v}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid water (l):</td>
<td>$S_l = S_{f,l}$</td>
</tr>
<tr>
<td>Ice (i):</td>
<td>$S_i = S_{f,i}$</td>
</tr>
</tbody>
</table>
Motivation: coastal upwelling

Air-sea interactions: ICON & GETM

Idealised model

Conclusions & Outlook

Idealised atmosphere-ocean model: source and sink connections

Atmosphere

- **Water vapour (v):**
 - \[I_v = -I_{v,l} - I_{v,i} - I_{v,r} \]
 - \[S_v = S_{f,v} \]

- **Liquid water (l):**
 - \[I_l = I_{v,l} - I_{l,i} - I_{l,r} \]

- **Ice (i):**
 - \[I_i = I_{v,i} + I_{l,i} - I_{i,sn} \]

- **Rain drops (r):**
 - \[I_r = I_{v,r} + I_{l,r} - I_{r,sn} \]
 - \[S_r = -S_{r,f} \]

Ocean

- **Fresh water (f):**
 - \[S_f = S_{r,f} + S_{sn,f} - S_{f,v} \]
Motivation: coastal upwelling

Air-sea interactions: ICON & GETM

Idealised model

Conclusions & Outlook

Tobias Bauer (tobias.bauer@tropos.de)

Air-sea interactions Western Baltic Sea

July 11, 2018

13 / 27

Idealised atmosphere-ocean model: source and sink connections

Atmosphere

Ocean

Water vapour (v): \[I_v = -I_{v,l} - I_{v,i} - I_{v,r} \]

Liquid water (l): \[I_l = I_{v,l} - I_{l,i} - I_{l,r} \]

Ice (i): \[I_i = I_{v,i} + I_{l,i} - I_{i,sn} \]

Rain drops (r): \[I_r = I_{v,r} + I_{l,r} - I_{r,sn} \]

Snow (sn): \[I_{sn} = I_{r,sn} + I_{i,sn} \]

Fresh water (f): \[S_f = S_{f,v} \]

Rain drops (sn): \[S_{sn,f} = -S_{sn,f} \]
Idealised atmosphere-ocean model: source and sink connections

Atmosphere

- Water vapour (v):
 \[I_v = -I_{v,l} - I_{v,i} - I_{v,r} \]
 \[S_v = S_{f,v} \]

- Liquid water (l):
 \[I_l = I_{v,l} - I_{l,i} - I_{l,r} \]

- Ice (i):
 \[I_i = I_{v,i} + I_{l,i} - I_{i,sn} \]

- Rain drops (r):
 \[I_r = I_{v,r} + I_{l,r} - I_{r,sn} \]
 \[S_r = -S_{r,f} \]

- Snow (sn):
 \[I_{sn} = I_{r,sn} + I_{i,sn} \]
 \[S_{sn} = -S_{sn,f} \]

- Fresh water (f):
 \[S_f = S_{r,f} + S_{sn,f} - S_{f,v} \]

Ocean

Tobias Bauer (tobias.bauer@tropos.de)
Idealised atmosphere-ocean model: continuity equation

1. **Atmosphere** components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)

 Wacker et al., 2006, Bott, 2008

2. **Ocean** components: fresh water (f) and salinity (sa)

 Burchard et al., 2004
Idealised atmosphere-ocean model: continuity equation

1. **Atmosphere** components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)
 Wacker et al., 2006, Bott, 2008

2. **Ocean** components: fresh water (f) and salinity (sa)
 Burchard et al., 2004

3. No internal and external source and sink terms for dry air and salinity
Idealised atmosphere-ocean model: continuity equation

1. **Atmosphere** components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)
 Wacker et al., 2006, Bott, 2008

2. **Ocean** components: fresh water (f) and salinity (sa)
 Burchard et al., 2004

3. No internal and external source and sink terms for dry air and salinity

4. No internal source and sink term for fresh water
1 Atmosphere components: dry air \((d)\), water vapour \((v)\), liquid water \((l)\), ice \((i)\), rain drops \((r)\) and snow \((sn)\)

Wacker et al., 2006, Bott, 2008

2 Ocean components: fresh water \((f)\) and salinity \((sa)\)

Burchard et al., 2004

3 No internal and external source and sink terms for dry air and salinity

4 No internal source and sink term for fresh water

Mass conservation of atmosphere-ocean system:

\[\Rightarrow \text{exchange of mass at air-sea interface} \]

\[\Rightarrow \text{atmosphere and ocean, each on its own not mass conserving} \]

\[\Rightarrow \text{compressible and non-hydrostatic set of equation} \]
Idealised atmosphere-ocean model: continuity equation

Atmosphere:

- **Dry air** (d):
 \[
 \frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0
 \]

- **All other components**:
 \[
 \frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k
 \]
Idealised atmosphere-ocean model: continuity equation

Atmosphere:

- Dry air (d):
 \[
 \frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0
 \]

- All other components:
 \[
 \frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k
 \]

\[
\frac{\partial \rho^A}{\partial t} + \nabla \cdot (\rho^A \cdot \mathbf{v}^A) = \sum [I_k + S_k] = S
\]
Idealised atmosphere-ocean model: continuity equation

Atmosphere:

- **Dry air** (d):
 \[\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0 \]

- **All other components:**
 \[\frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k \]

- **Mass conserving:**
 \[\frac{\partial (\rho_A + \rho_O)}{\partial t} + \nabla \cdot (\rho_A \cdot \mathbf{v}_A + \rho_O \cdot \mathbf{v}_O) = S + S_f = 0 \]

 \[\Rightarrow S = -S_f \]

Ocean:

- **Fresh water** (f):
 \[\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \cdot \mathbf{v}_f) = S_f \]

- **Salinity** (sa):
 \[\frac{\partial \rho_{sa}}{\partial t} + \nabla \cdot (\rho_{sa} \cdot \mathbf{v}_{sa}) = 0 \]
Idealised atmosphere-ocean model: continuity equation

Atmosphere:

- Dry air (d):
 \[
 \frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \mathbf{v}_d) = 0
 \]

- All other components:
 \[
 \frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \mathbf{v}_k) = I_k + S_k
 \]

\[\frac{\partial \rho^A}{\partial t} + \nabla \cdot (\rho^A \mathbf{v}^A) = \sum [I_k + S_k] = S \]

Ocean:

- Fresh water (f):
 \[
 \frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \mathbf{v}_f) = S_f
 \]

- Salinity (sa):
 \[
 \frac{\partial \rho_{sa}}{\partial t} + \nabla \cdot (\rho_{sa} \mathbf{v}_{sa}) = 0
 \]

\[\frac{\partial \rho^O}{\partial t} + \nabla \cdot (\rho^O \mathbf{v}^O) = S_f \]
Idealised atmosphere-ocean model: continuity equation

Atmosphere:

- **Dry air** (d):
 \[
 \frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0
 \]

- **All other components:**
 \[
 \frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k
 \]

\[
\frac{\partial \rho^A}{\partial t} + \nabla \cdot (\rho^A \cdot \mathbf{v}^A) = \Sigma [I_k + S_k] = S
\]

Ocean:

- **Fresh water** (f):
 \[
 \frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \cdot \mathbf{v}_f) = S_f
 \]

- **Salinity** (sa):
 \[
 \frac{\partial \rho_{sa}}{\partial t} + \nabla \cdot (\rho_{sa} \cdot \mathbf{v}_{sa}) = 0
 \]

\[
\frac{\partial \rho^O}{\partial t} + \nabla \cdot (\rho^O \cdot \mathbf{v}^O) = S_f
\]

Mass conserving:

\[
\frac{\partial (\rho^A + \rho^O)}{\partial t} + \nabla \cdot (\rho^A \cdot \mathbf{v}^A + \rho^O \cdot \mathbf{v}^O) = S + S_f = 0
\]

\[
\Rightarrow S = -S_f
\]
Idealised atmosphere-ocean model: further assumptions

Atmosphere:

- Treatment as ideal gas
- No pressure forces on hydrometers, i.e. only on dry air and water vapour
- Equation of state: $p = \rho^A \cdot R \cdot T = \rho^A \cdot R_d \cdot T_v$

Ocean:

- Handling of salinity as tracer
- Linearised equation of state: $\rho^O = \rho_0^O \cdot (1 + \alpha \cdot (\theta - \theta_I) + \beta \cdot (sa - sa_I))$
Idealised atmosphere-ocean model: momentum equation of atmosphere

Momentum equation (atmosphere):

\[
\frac{\partial (\rho^A v^A)}{\partial t} + \nabla \cdot \left(\rho^A v^A \cdot v^{AT} \right) = -\nabla p^A - \rho^A \cdot \nabla \phi - 2 \cdot \Omega \times \rho^A v^A + \nabla \cdot \tau^A + v^A \cdot S \\
+ \sum \left[(v_k - v^A) \cdot (I_k + S_k) \right] - \sum \left[\nabla \cdot \left(\rho_k (v_k - v^A) \cdot (v_k - v^A)^T \right) \right]
\]
Idealised atmosphere-ocean model: momentum equation of atmosphere

Momentum equation (atmosphere):

\[
\frac{\partial (\rho^A v^A)}{\partial t} + \nabla \cdot \left(\rho^A v^A v^A_T \right) = -\nabla p^A - \rho^A \cdot \nabla \phi - 2 \cdot \Omega \times \rho^A v^A + \nabla \cdot \tau^A + v^A \cdot S
\]

\[
+ \Sigma \left[(v_k - v^A) \cdot (I_k + S_k) \right] - \Sigma \left[\nabla \cdot \left(\rho_k (v_k - v^A) \cdot (v_k - v^A)^T \right) \right]
\]

Differences to ICON:

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: momentum equation of atmosphere

Momentum equation (atmosphere):

\[
\frac{\partial (\rho^A v^A)}{\partial t} + \nabla \cdot \left(\rho^A v^A v^A \right) = - \nabla p^A - \rho^A \cdot \nabla \phi - 2 \cdot \Omega \times \rho^A v^A + \nabla \cdot \tau^A + v^A \cdot S \\
+ \sum \left[(v_k - v^A) \cdot (I_k + S_k) \right] - \sum \left[\nabla \cdot \left(\rho_k (v_k - v^A) \cdot (v_k - v^A)^T \right) \right]
\]

Differences to ICON:
- Mass conservation: \(S = 0 \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: momentum equation of atmosphere

Momentum equation (atmosphere):

\[\frac{\partial (\rho^A v^A)}{\partial t} + \nabla \cdot \left(\rho^A v^A \cdot v^{AT} \right) = - \nabla p^A - \rho^A \cdot \nabla \phi - 2 \cdot \Omega \times \rho^A v^A + \nabla \cdot \tau^A \]

\[+ \sum \left[(v_k - v^A) \cdot (I^k + S_k) \right] - \sum \left[\nabla \cdot \left(\rho_k (v_k - v^A) \cdot (v_k - v^A)^T \right) \right] \]

Differences to ICON:

- Mass conservation: \(S = 0 \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: momentum equation of atmosphere

Momentum equation (atmosphere):

\[
\begin{align*}
\frac{\partial (\rho^A v^A)}{\partial t} + \nabla \cdot \left(\rho^A v^A \cdot v^A T \right) &= - \nabla p^A - \rho^A \cdot \nabla \phi - 2 \cdot \Omega \times \rho^A v^A + \nabla \cdot \tau^A \\
&\quad + \sum [(v_k - v^A) \cdot (I_k + S_k)] - \sum [\nabla \cdot (\rho_k (v_k - v^A) \cdot (v_k - v^A)^T)]
\end{align*}
\]

Differences to ICON:

- Mass conservation: \(S = 0 \)
- a) \(\sum [(v_k - v^A) \cdot (I_k + S_k)] = 0 \) (conservation of momentum due to chemical reactions)

Lange, 2002, Gassmann et al., 2008
Motivation: coastal upwelling
Air-sea interactions: ICON & GETM
Idealised model
Conclusions & Outlook

Idealised atmosphere-ocean model: momentum equation of atmosphere

Momentum equation (atmosphere):

\[
\frac{\partial (\rho A v^A)}{\partial t} + \nabla \cdot (\rho A v^A \cdot v^A T) = - \nabla p^A - \rho A v^A \cdot \nabla \phi - 2 \cdot \Omega \times \rho A v^A + \nabla \cdot \tau^A - \sum \left[\nabla \cdot \left(\rho_k (v_k - v^A) \cdot (v_k - v^A)^T \right) \right]
\]

Differences to ICON:

- **Mass conservation:** \(S = 0 \)
- a) \(\sum \left[(v_k - v^A) \cdot (I_k + S_k) \right] = 0 \) (conservation of momentum due to chemical reactions)
- b) \(v_k \approx v^A \Rightarrow \sum \left[\nabla \cdot \left(\rho_k (v_k - v^A) \cdot (v_k - v^A)^T \right) \right] \ll \nabla \cdot \left(\rho A v^A \cdot v^A T \right) \Rightarrow \text{negligible} \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: momentum equation of atmosphere

Momentum equation (atmosphere):

\[
\frac{\partial (\rho^A v^A)}{\partial t} + \nabla \cdot \left(\rho^A v^A \cdot v^A_T \right) = -\nabla p^A - \rho^A \cdot \nabla \phi - 2 \cdot \Omega \times \rho^A v^A + \nabla \cdot \tau^A
\]

Differences to ICON:

- Mass conservation: \(S = 0 \)
- a) \(\sum \left[(v_k - v^A) \cdot (I_k + S_k) \right] = 0 \) (conservation of momentum due to chemical reactions)
- b) \(v_k \approx v^A \Rightarrow \sum \left[\nabla \cdot \left(\rho^A_k (v_k - v^A) \cdot (v_k - v^A)^T \right) \right] \ll \nabla \cdot \left(\rho^A v^A \cdot v^A_T \right) \Rightarrow \text{negligible} \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: momentum equation of ocean

Momentum equation (ocean):

\[
\frac{\partial (\rho^O v^O)}{\partial t} + \nabla \cdot \left(\rho^O v^O \cdot v^O \right) = -\nabla p^O - \rho^O \cdot \nabla \phi - 2 \cdot \Omega \times \rho^O v^O + \nabla \cdot \tau^O + v_f \cdot S_f
- \sum \nabla \cdot \left(\rho_k (v_k - v^O) \cdot (v_k - v^O)^T \right)
\]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0\)
- \(v_k = v^O\) ⇒ \(\sum \nabla \cdot \left(\rho_k (v_k - v^O) \cdot (v_k - v^O)^T \right) = 0\)
Idealised atmosphere-ocean model: momentum equation of ocean

Momentum equation (ocean):

\[
\frac{\partial (\rho^Ov^O)}{\partial t} + \nabla \cdot \left(\rho^Ov^O \cdot v^O_T \right) = -\nabla p^O - \rho^O \cdot \nabla \phi - 2 \cdot \Omega \times \rho^Ov^O + \nabla \cdot \tau^O + v_f \cdot S_f \\
- \sum \left[\nabla \cdot \left(\rho_k (v_k - v^O) \cdot (v_k - v^O)^T \right) \right]
\]

Differences to GETM:

Burchard et al., 2004
Idealised atmosphere-ocean model: momentum equation of ocean

Momentum equation (ocean):

\[
\frac{\partial (\rho^O v^O)}{\partial t} + \nabla \cdot \left(\rho^O v^O \cdot v^{OT} \right) = -\nabla p^O - \rho^O \cdot \nabla \phi - 2 \cdot \Omega \times \rho^O v^O + \nabla \cdot \tau^O + \mathbf{v}_f \cdot S_f \\
- \sum \left[\nabla \cdot \left(\rho_k (v_k - v^O) \cdot (v_k - v^O)^T \right) \right]
\]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0 \)

Burchard et al., 2004
Momentum equation (ocean):

\[
\frac{\partial (\rho^O v^O)}{\partial t} + \nabla \cdot \left(\rho^O v^O \cdot v^O \right) = -\nabla p^O - \rho^O \cdot \nabla \phi - 2 \Omega \times \rho^O v^O + \nabla \cdot \tau^O \\
- \Sigma \left[\nabla \cdot \left(\rho_k (v_k - v^O) \cdot (v_k - v^O)^T \right) \right]
\]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0 \)
- \(v_k = v^O \Rightarrow \Sigma \left[\nabla \cdot \left(\rho_k (v_k - v) \cdot (v_k - v)^T \right) \right] = 0 \)
Momentum equation (ocean):

\[
\frac{\partial (\rho^O v^O)}{\partial t} + \nabla \cdot \left(\rho^O v^O \cdot v^O T \right) = -\nabla p^O - \rho^O \cdot \nabla \phi - 2 \cdot \Omega \times \rho^O v^O + \nabla \cdot \tau^O
\]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0 \)
- \(v_k = v^O \Rightarrow \sum \left[\nabla \cdot \left(\rho_k (v_k - v) \cdot (v_k - v)^T \right) \right] = 0 \)
Idealised atmosphere-ocean model: energy equation of atmosphere

Energy equation (atmosphere):

\[
\sum \left[\frac{\partial (\rho_{k} K_{k})}{\partial t} + \nabla \cdot (\rho_{k} K_{k} \cdot \mathbf{v}_{k}) \right] + \frac{\partial \rho A \phi}{\partial t} + \nabla \cdot (\rho A \phi \cdot \mathbf{v} A) + \frac{\partial \rho A e A}{\partial t} + \nabla \cdot (\rho A e A \cdot \mathbf{v} A) \\
= \sum \left[- (\mathbf{v} - \mathbf{v} A) \cdot \nabla p + (\mathbf{v}_{k} - \mathbf{v} A) \cdot (\nabla \cdot \tau_{k}) + (K_{k} - K A) \cdot (l_{k} + S_{k}) \right] \\
- \nabla \cdot (\rho A \cdot \mathbf{v} A) + \nabla \cdot (\tau A \cdot \mathbf{v} A) - \nabla \cdot Q A + (K A + \phi + h A) \cdot S
\]
Idealised atmosphere-ocean model: energy equation of atmosphere

Energy equation (atmosphere):

\[
\sum \left[\frac{\partial (\rho K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot v_k) \right] + \frac{\partial (\rho A \phi)}{\partial t} + \nabla \cdot (\rho A \phi \cdot v^A) + \frac{\partial (\rho A e^A)}{\partial t} + \nabla \cdot (\rho A e^A \cdot v^A) = \sum \left[-(v_k - v^A) \cdot \nabla p_k + (v_k - v^A) \cdot (\nabla \cdot \tau_k) + (K_k - K^A) \cdot (I_k + S_k) \right] - \nabla \cdot (\rho A \cdot v^A) + \nabla \cdot (\tau^A \cdot v^A) - \nabla \cdot Q^A + (K^A + \phi + h^A) \cdot S
\]

Differences to ICON:

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: energy equation of atmosphere

Energy equation (atmosphere):

\[
\sum \left[\frac{\partial (\rho_k K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot v_k) \right] + \frac{\partial (\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot v^A) + \frac{\partial (\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot v^A) = \sum \left[- (v_k - v^A) \cdot \nabla p_k + (v_k - v^A) \cdot (\nabla \cdot \tau_k) + (K_k - K^A) \cdot (I_k + S_k) \right] \\
- \nabla \cdot (\rho^A \cdot v^A) + \nabla \cdot (\tau^A \cdot v^A) - \nabla \cdot Q^A + (K^A + \phi + h^A) \cdot S
\]

Differences to ICON:

- Mass conservation: \(S = 0 \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: energy equation of atmosphere

Energy equation (atmosphere):

\[
\sum \left[\frac{\partial (\rho K_k)}{\partial t} + \nabla \cdot (\rho K_k \cdot v_k) \right] + \frac{\partial (\rho A \phi)}{\partial t} + \nabla \cdot (\rho A \phi \cdot v^A) + \frac{\partial (\rho A e^A)}{\partial t} + \nabla \cdot (\rho A e^A \cdot v^A) \\
= \sum \left[-(v_k - v^A) \cdot \nabla p_k + (v_k - v^A) \cdot (\nabla \cdot \tau_k) + (K_k - K^A) \cdot (l_k + S_k) \right] \\
- \nabla \cdot (\rho A \cdot v^A) + \nabla \cdot (\tau^A \cdot v^A) - \nabla \cdot Q^A
\]

Differences to ICON:

- Mass conservation: \(S = 0 \)
- \(v_k \approx v^A \Rightarrow K_k \approx K^A \Rightarrow \text{negligible} \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: energy equation of atmosphere

Energy equation (atmosphere):

\[
\sum \left[\frac{\partial (\rho_k K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot v_k) \right] + \frac{\partial (\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot v^A) + \frac{\partial (\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot v^A)
\]

\[
= \sum \left[-(v_k - v^A) \cdot \nabla p_k + (v_k - v^A) \cdot (\nabla \cdot \tau_k) + (K_k - K^A) \cdot (I_k + S_k) \right]
- \nabla \cdot (\rho^A \cdot v^A) + \nabla \cdot (\tau^A \cdot v^A) - \nabla \cdot Q^A
\]

Differences to ICON:

- Mass conservation: \(S = 0 \)
- \(v_k \approx v^A \Rightarrow K_k \approx K^A \Rightarrow \text{negligible} \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: energy equation of atmosphere

Energy equation (atmosphere):

\[
\sum \left[\frac{\partial (\rho_k K^A)}{\partial t} + \nabla \cdot (\rho_k K^A \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot \mathbf{v}^A) + \frac{\partial (\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot \mathbf{v}^A)
\]

\[
= - \nabla \cdot (p^A \cdot \mathbf{v}^A) + \nabla \cdot (\tau^A \cdot \mathbf{v}^A) - \nabla \cdot Q^A
\]

Differences to ICON:

- Mass conservation: \(S = 0 \)
- \(\mathbf{v}_k \approx \mathbf{v}^A \Rightarrow K_k \approx K^A \Rightarrow \) negligible

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: energy equation of atmosphere

Energy equation (atmosphere):

\[
\frac{\partial}{\partial t} \left(\rho^A (K^A + \phi + e^A) \right) + \nabla \cdot \left(\rho^A (K^A + \phi + e^A) \cdot v^A \right) = - \nabla \cdot (p^A \cdot v^A) + \nabla \cdot (\tau^A \cdot v^A) - \nabla \cdot Q^A
\]

Differences to ICON:

- Mass conservation: \(S = 0 \)
- \(v_k \approx v^A \Rightarrow K_k \approx K^A \Rightarrow \text{negligible} \)

Lange, 2002, Gassmann et al., 2008
Idealised atmosphere-ocean model: energy equation of ocean

Energy equation (ocean):

\[
\sum \left[\frac{\partial (\rho_k K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^O \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot \mathbf{v}^O) + \frac{\partial (\rho^O e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot \mathbf{v}^O) \\
= \sum [- (\mathbf{v}_k - \mathbf{v}^O) \cdot \nabla p_k + (\mathbf{v}_k - \mathbf{v}^O) \cdot (\nabla \cdot \tau_k)] \\
- \nabla \cdot (\rho^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O + (K_f + \phi + h^O) \cdot S_f
\]
Idealised atmosphere-ocean model: energy equation of ocean

Energy equation (ocean):

\[
\begin{align*}
\sum \left[\frac{\partial (\rho_k K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^O \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot \mathbf{v}^O) + \frac{\partial (\rho^O e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot \mathbf{v}^O) \\
= \sum \left[- (\mathbf{v}_k - \mathbf{v}^O) \cdot \nabla p_k + (\mathbf{v}_k - \mathbf{v}^O) \cdot (\nabla \cdot \tau_k) \right] \\
- \nabla \cdot (p^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O + (K_f + \phi + h^O) \cdot S_f
\end{align*}
\]

Differences to GETM:

Burchard et al., 2004
Idealised atmosphere-ocean model: energy equation of ocean

Energy equation (ocean):

\[
\begin{align*}
\sum \left[\frac{\partial}{\partial t} \left(\rho_k K_k \right) + \nabla \cdot \left(\rho_k K_k \cdot v_k \right) \right] + \frac{\partial}{\partial t} \left(\rho^O \phi \right) + \nabla \cdot \left(\rho^O \phi \cdot v^O \right) + \frac{\partial}{\partial t} \left(\rho^O e^O \right) + \nabla \cdot \left(\rho^O e^O \cdot v^O \right) \\
= \sum \left[- (v_k - v^O) \cdot \nabla p_k + (v_k - v^O) \cdot (\nabla \cdot \tau_k) \right] \\
- \nabla \cdot (p^O \cdot v^O) + \nabla \cdot (\tau^O \cdot v^O) - \nabla \cdot Q^O + (K_f + \phi + h^O) \cdot S_f
\end{align*}
\]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0 \)
Idealised atmosphere-ocean model: energy equation of ocean

Energy equation (ocean):

\[
\begin{align*}
\sum \left[\frac{\partial (\rho_k K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^O \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot \mathbf{v}^O) + \frac{\partial (\rho^O e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot \mathbf{v}^O) \\
= \sum \left[- (\mathbf{v}_k - \mathbf{v}^O) \cdot \nabla p_k + (\mathbf{v}_k - \mathbf{v}^O) \cdot (\nabla \cdot \tau_k) \right] \\
- \nabla \cdot (p^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O
\end{align*}
\]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0 \)
- \(\mathbf{v}_k = \mathbf{v}^O \Rightarrow K_k = K^O \)
Idealised atmosphere-ocean model: energy equation of ocean

Energy equation (ocean):

\[\sum \left[\frac{\partial (\rho_k K^O)}{\partial t} + \nabla \cdot (\rho_k K^O \cdot v_k) \right] + \frac{\partial (\rho^O \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot v^O) + \frac{\partial (\rho^O e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot v^O) \]

\[= - \nabla \cdot (p^O \cdot v^O) + \nabla \cdot (\tau^O \cdot v^O) - \nabla \cdot Q^O \]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0 \)
- \(v_k = v^O \Rightarrow K_k = K^O \)
Idealised atmosphere-ocean model: energy equation of ocean

Energy equation (ocean):

\[
\frac{\partial}{\partial t} \left(\rho^O (K^O + \phi + e^O) \right) + \nabla \cdot \left(\rho^O (K^O + \phi + e^O) \cdot \mathbf{v}^O \right) = - \nabla \cdot (p^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O
\]

Differences to GETM:

- Boussinesq approximation leads to mass conservation, i.e. \(S_f = 0 \)
- \(v_k = v^O \Rightarrow K_k = K^O \)
Idealised atmosphere-ocean model: air-sea interactions

- Mass and momentum conservation and energy consistency
- Unified parameterisation of air-sea interactions
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation
Idealised atmosphere-ocean model: air-sea interactions

- Mass and momentum conservation and energy consistency
- **Unified parameterisation of air-sea interactions**
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation
Idealised atmosphere-ocean model: air-sea interactions

- Mass exchange due to
 a) Precipitation: $S_{r,f} + S_{sn,f}$
 b) Evaporation: $S_{r,v}$
Idealised atmosphere-ocean model: source and sink connections

Atmosphere

Water vapour (v): \[I_v = -I_{v,l} - I_{v,i} - I_{v,r} \]
\[S_v = S_{f,v} \]

Liquid water (l): \[I_l = I_{v,l} - I_{l,i} - I_{l,r} \]

Ice (i): \[I_i = I_{v,i} + I_{l,i} - I_{i,sn} \]

Rain drops (r): \[I_r = I_{v,r} + I_{l,r} - I_{r,sn} \]
\[S_r = -S_{r,f} \]

Snow (sn): \[I_{sn} = I_{r,sn} + I_{i,sn} \]
\[S_{sn} = -S_{sn,f} \]

Fresh water (f): \[S_f = S_{r,f} + S_{sn,f} - S_{f,v} \]

Ocean
Motivation: coastal upwelling
Air-sea interactions: ICON & GETM
Ideational model
Conclusions & Outlook

Tobias Bauer (tobias.bauer@tropos.de) Air-sea interactions Western Baltic Sea July 11, 2018 23 / 27
Idealised atmosphere-ocean model: source and sink connections

Atmosphere

- d (dust)
- v (water vapour)
- l (liquid water)
- i (ice)

Ocean

- sa (salinity)
- f (fresh water)
- sn (snow)

Water vapour (v):

\[S_v = S_{f,v} \]

Liquid water (l):

\[S_l = S_{l,i} \]

Ice (i):

\[S_i = S_{i,r} \]

Rain drops (r):

\[S_r = -S_{r,f} \]

Snow (sn):

\[S_{sn} = -S_{sn,f} \]

Fresh water (f):

\[S_f = S_{r,f} + S_{sn,f} - S_{f,v} \]
Idealised atmosphere-ocean model: air-sea interactions

- Mass exchange due to
 a) Precipitation: $S_{r,f} + S_{sn,f}$
 b) Evaporation: $S_{f,v}$
Idealised atmosphere-ocean model: air-sea interactions

- Mass exchange due to
 a) Precipitation: $S_{r,f} + S_{sn,f}$
 b) Evaporation: $S_{f,v}$

Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.
Idealised atmosphere-ocean model: air-sea interactions

- Mass exchange due to
 a) Precipitation: $S_{r,f} + S_{sn,f}$
 b) Evaporation: $S_{f,v}$

Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.

- Heat exchange and radiative energy intake: formulation of $\nabla \cdot Q^A$ and $\nabla \cdot Q^O$
Mass exchange due to
a) Precipitation: $S_{rf} + S_{sn, f}$
b) Evaporation: $S_{f, v}$

Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.

Heat exchange and radiative energy intake: formulation of $\nabla \cdot Q^A$ and $\nabla \cdot Q^O$

Treatment as external forcing of internal energy for individual atmosphere and ocean models:

$Q^A = Q_s + Q_l + Q_{bA} + Q_{LWA} + Q_{SWA}$ and $Q^O = -Q_s - Q_l + Q_{bO} + Q_{LWO} + Q_{SWO}$
Idealised atmosphere-ocean model: air-sea interactions

- Mass exchange due to
 a) Precipitation: $S_{r,f} + S_{sn,f}$
 b) Evaporation: $S_{f,v}$

 Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.

- Heat exchange and radiative energy intake: formulation of $\nabla \cdot Q^A$ and $\nabla \cdot Q^O$

 1. Treatment as external forcing of internal energy for individual atmosphere and ocean models:

 $Q^A = Q_s + Q_l + Q_b^A + Q_{LW}^A + Q_{SW}^A$ and $Q^O = -Q_s - Q_l + Q_b^O + Q_{LW}^O + Q_{SW}^O$

 2. Atmosphere-ocean model: radiative energy intake as external forcing of internal energy:

 $Q = Q_b^A + Q_b^O + Q_{LW}^A + Q_{LW}^O + Q_{SW}^O + Q_{SW}^O$
Idealised atmosphere-ocean model: vertical discretisation

- Rise and sink of sea level with precipitation (P) and evaporation (E)
- Fixed vertical layer at $z = 0$ either in atmosphere or ocean
- Adaptive vertical discretisation necessary

Tobias Bauer (tobias.bauer@tropos.de)
Idealised atmosphere-ocean model: vertical discretisation

- Rise and sink of sea level with precipitation (P) and evaporation (E)
Idealised atmosphere-ocean model: vertical discretisation

- Rise and sink of sea level with precipitation (P) and evaporation (E)
- Fixed vertical layer at $z = 0$ either in atmosphere or ocean
Idealised atmosphere-ocean model: vertical discretisation

- Rise and sink of sea level with precipitation (P) and evaporation (E)
- Fixed vertical layer at $z = 0$ either in atmosphere or ocean
- Adaptive vertical discretisation necessary
Conclusions

- Coupling of atmosphere-ocean systems only recommended with unified parameterisation of air-sea interactions
- Mass conservation only for atmosphere-ocean systems and not for individual subsystems
- Idealised atmosphere-ocean model with further assumptions reformable to coupled ICON-GETM model
- Heat fluxes as external source for internal energy in atmosphere and ocean models, but not for whole atmosphere-ocean models
- Radiative energy intake always as external source for internal energy
Outlook

- Applying turbulence closure scheme for idealised model
- Formulation of heat fluxes for idealised model with use of a coupler
- Investigation of different discretisation approaches for needs of idealised model
- Validation of idealised model against benchmark tests for atmosphere and ocean parts

Air-sea interactions
Ekman transport in water

- Rotation of 45° of surface current due to Coriolis force (Coriolis effect)
- Continuing of rotation into ocean till wind looses influence (Ekman spiral)
- Transporting of water in 90° angle of the wind (Ekman transport)
- Northern/southern hemisphere in right/left direction

What is coastal upwelling?

- Oceanographic phenomenon
- Main drivers: wind, Coriolis effect and Ekman transport
- Brings dense, cooler and usually nutrient-rich water towards the ocean surface
- Higher marine productivity due to an increase in plankton
- Cooling of lower atmosphere

www.seos-project.eu (15.07.2016)
Coastal upwelling – coast of Poland: May 25 – Jun 08, 2008

Weather map of Europe on 25th of May 2008 at 6am UTC

- Occasionally weather situation
- High pressure system over southern Scandinavia
- Wind direction mainly northeast

(geopotential, relative topography and surface pressure)
Coupling techniques

Models
- Atmosphere
- Ocean
- Land
- Sea/Land-Ice...

Coupling techniques
- Offline
- Semi-offline
- Online

Source code
- Requires software interfaces

Data transfer
- More flexible
- No/minimum code changes

Couplers
- Problems of software combination (all-in-one) avoided
- Helps to exchange data directly among component models

- Multiple runs of the models
- Exchange via files after large time period
- Costs a lot of computing time

- Similar to offline
- Exchange after short time period

Tobias Bauer (tobias.bauer@tropos.de)
Online coupling – What are the benefits of a coupler?

- Coupling of additional components to existent models, e.g. atmospheric chemistry, marine biology, carbon cycle etc.
- Developing of components independently from models
- Changing of existing code in the components minimized
- Performing of necessary interpolations
- Supporting of multiple core applications

Couplers: ESMF, MCT, OASIS, YAC
Coupled models for the Baltic Sea or coastal upwelling

<table>
<thead>
<tr>
<th>Model</th>
<th>Atmosphere</th>
<th>Ocean</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRLAM/BOBA-PROBE</td>
<td>HIRLAM</td>
<td>BOBA-PROBE</td>
<td>Gustafsson et al., 1998</td>
</tr>
<tr>
<td>REMO/BSMO</td>
<td>REMO</td>
<td>BSMO</td>
<td>Hagedorn et al., 2000</td>
</tr>
<tr>
<td>RCAO</td>
<td>RCA2</td>
<td>RCO</td>
<td>Döscher et al., 2002</td>
</tr>
<tr>
<td>BALTIMOS</td>
<td>REMO</td>
<td>BSIOM</td>
<td>Lehmann et al., 2004</td>
</tr>
<tr>
<td>COAMPS/ROMS</td>
<td>COAMPS</td>
<td>ROMS</td>
<td>Perlin et al., 2007</td>
</tr>
<tr>
<td>COSTRICE</td>
<td>COSMO-CLM</td>
<td>TRIMNP</td>
<td>Ho et al., 2012</td>
</tr>
<tr>
<td>COSMO-CLM/NEMO</td>
<td>COSMO-CLM</td>
<td>NEMO</td>
<td>Van Pham et al., 2014</td>
</tr>
<tr>
<td>RCA4_NEMO</td>
<td>RCA4</td>
<td>NEMO</td>
<td>Wang et al., 2015</td>
</tr>
</tbody>
</table>
Coupled models for the Baltic Sea or coastal upwelling

<table>
<thead>
<tr>
<th>Model</th>
<th>Atmosphere</th>
<th>Ocean</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRLAM/BOBA-PROBE</td>
<td>HIRLAM</td>
<td>BOBA-PROBE</td>
<td>Gustafsson et al., 1998</td>
</tr>
<tr>
<td>REMO/BSMO</td>
<td>REMO</td>
<td>BSMO</td>
<td>Hagedorn et al., 2000</td>
</tr>
<tr>
<td>RCAO</td>
<td>RCA2</td>
<td>RCO</td>
<td>Döscher et al., 2002</td>
</tr>
<tr>
<td>BALTIMOS</td>
<td>REMO</td>
<td>BSIOM</td>
<td>Lehmann et al., 2004</td>
</tr>
<tr>
<td>COAMPS/ROMS</td>
<td>COAMPS</td>
<td>ROMS</td>
<td>Perlin et al., 2007</td>
</tr>
<tr>
<td>COSTRICE</td>
<td>COSMO-CLM</td>
<td>TRIMNP</td>
<td>Ho et al., 2012</td>
</tr>
<tr>
<td>COSMO-CLM/NEMO</td>
<td>COSMO-CLM</td>
<td>NEMO</td>
<td>Van Pham et al., 2014</td>
</tr>
<tr>
<td>RCA4_NEMO</td>
<td>RCA4</td>
<td>NEMO</td>
<td>Wang et al., 2015</td>
</tr>
</tbody>
</table>
COAMPS/ROMS vs. COSMO-CLM/NEMO

<table>
<thead>
<tr>
<th>Coupler</th>
<th>COAMPS/ROMS (Perlin et al., 2007)</th>
<th>COSMO-CLM/NEMO (Van Pham et al., 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COAMPS</td>
<td>MCT</td>
<td>OASIS3</td>
</tr>
<tr>
<td>ROMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation</td>
<td>Non-hydrostatic, compressible</td>
<td>Non-hydrostatic, compressible</td>
</tr>
<tr>
<td></td>
<td>Hydrostatic, free-surface</td>
<td>Hydrostatic, free-surface</td>
</tr>
<tr>
<td>Horizontal resolution</td>
<td>50x20 1-km by 1-km grid boxes</td>
<td>50 km</td>
</tr>
<tr>
<td></td>
<td>3 km</td>
<td></td>
</tr>
<tr>
<td>Vertical layers</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>56</td>
</tr>
<tr>
<td>Main achievement</td>
<td>Modelling of wind-driven up-welling system along the coast of Oregon</td>
<td>Investigation of 2m temperature biases between observed data and (un-)coupled results</td>
</tr>
</tbody>
</table>
Coupler: ESMF – Earth System Modeling Framework

- Suite of software tools for developing high-performance, multicomponent Earth science modeling applications
- Components: atmosphere, ocean, terrestrial or other physical domains and constituent processes (dynamical, chemical, biological etc.)
- Set of simple, consistent component interfaces – applicable even to couplers themselves
- Variety of data structures for transferring data between components, libraries for regridding/interpolation, time advancement and other common modeling functions

Hill et al., 2004