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Overview 
è Recent work on microphysics parameterizations

èPrognostic cirrus microphysics 
èPrognostic melting scheme for snow
èTwo-moment microphysics for deep convection

è Some thougths on sub-grid precipitation
èAutoconversion

èConvective precipitation
è PDF-based vs stochastic schemes
è Conclusions



Parameterization of cirrus clouds: Multiple ice modes
è Heterogeneous and homogeneous nucleation  

produce very different number concentration, and 
compete with each other 

è To properly describe this system we use a two-
moment two-mode cloud ice scheme with a one-
moment snow class

Prognostic ice variables: qhom, Nhom, qhet, Nhet, qs

è Depositional growth can then be parameterized by 
a multi-timescale relaxation approach (e.g. 
Morrison et al. 2005)

Heterogeneous    Homogeneous



Parameterization of cirrus clouds: Multiple ice modes
è Idealized simulations of orographic cirrus clouds



Parameterization of cirrus clouds: Multiple ice modes
è Idealized simulations of 

orographic cirrus clouds

è Impact on radiation?



∆t ! τfreez < τdep

∆t ≈ τfreez < τdep

Homogeneous nucleation: 
è Timescale of nucleation and depositional growth 

18 Methodology
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Figure 3.1: The timescales ∆t, tcr, τfreez and τdep with the nodes i for different time steps are

scetched. Difficulties arise when the model time step is too big to fully resolve the freezing event

but too small to entirely capture the freezing event.

and the global model GME ∆t = 133s where the sequence of timescales may vary between

∆t ≈ τfreez, (3.6)

∆t < τfreez < τdep and (3.7)

τfreez < τdep < ∆t. (3.8)

In order to take these scale differences into account and avoid double counting, it is necessary

to specify the time tcr at which the threshold for the homogeneous nucleation event Si,cr is

exceeded. This critical ice supersaturation ratio

Si,cr = 2.349−
T

259.00K
(3.9)

is a temperature dependent analytical fit from Ren and MacKenzie (2005) based on the results

from Koop et al. (2000). As the KHL06 parameterisation takes the competition between the

two processes into account a second condition has to be fulfilled. Namely wp < w where wp is

a fictious downdraft velocity accounting for preexisting ice particles

wp =
a2+a3Si
a1Si

Ri, wp ≥ 0 (3.10)

with

a1 =
LsMwg

cp RT 2
−
Mg

RT
, a2 =

1

nsat
and a3 =

L2s Mwmw
cp pT M

. (3.11)

The parameters needed in the following are latent heat of sublimation Ls = 2.836×106 Jkg
−1,

molecular mass of water Mw = 18 × 10−3 kgmol−1, universal gas constant R = 8.314

Jmol−1K−1, molecular mass of air M = 29× 10−3 kgmol−1, and mass of a water molecule

τfreez < τdep ! ∆t

Large-scale models:

Fully-resolved (large-eddy) model:

Current NWP models:



4.2. Observational analysis of the event 29

Abbildung 4.2: A series of power line towers which snapped off during the wet snowfall event in
November 2005 in the Münsterland area ( c� Sven Lüke, www.schneechaos-muensterland.de ).

In some regions of NRW, a disaster alert was declared. Near-surface temperatures we-
re slightly above the freezing point when snowfall started and therefore the snow was
very wet. The wet snow load and strong winds caused severe damage to 82 power line
towers; several of them even snapped off (Makkonen and Wichura, 2010) as shown in
Figure 4.2. As a consequence, approximately 250,000 residents were without electri-
city supply for several hours, some even for several days. The airport at Duesseldorf
was closed for several hours, trains were delayed and roads blocked by fallen trees.
Thousands of people spent the night from 25 to 26 November in their cars. Makkonen
and Wichura (2010) investigated the wet snow load and the snow deposition diameter
of the affected power lines in NRW due to wet snow accretion (Makkonen, 1989). They
found diameters of the wet snow cylinders surrounding the cables of up to approxima-
tely 15 cm indicating a maximum wet snow load up to 50 N/m. Using climatological data
they identified a return period of around 50 years for such a hazardous wet snowfall
event in northwest Germany.

è In current microphysics schemes meltwater contributes to rain, i.e., external 
instead of internal mixture.

è This leads to unphysical behavior, e.g., rain/meltwater may have a much 
higher fall speed, but fall speed of snow is always assumed as ,dry snow‘.

è In most NWP models snow melts too fast leading to problems in the 
forecasts of precipitation phase and wet snow.

è This can be a serious forecast problem!

Explicit snow melting model: The problem

A series of power line towers which snapped off during the 
wet snowfall event in November 2005 in Germany 
(picture by Sven Lüke, www.schneechaos-muensterland.de).

http://www.schneechaos-muensterland.de
http://www.schneechaos-muensterland.de


è Parameterization concept follows 
Szyrmer and Zawadzki (1999, JAS)

è Snowflakes below a critical size D* 
have melted completely

è Larger snowflakes are partially 
melted with LWF ~ 1/Ds  

è Instead of predicting qs and D* we 
use mixing ratios of ice and liquid 
part

and diagnose D* each time step.

Explicit snow melting model: Prognostic melt water

melt water 
on snowflakes

ice part of melting snowflakes
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2 Frick et al.: A bulk parameterization of melting snowflakes

the mixing ratio qs are given by

Ls = ρqs =
∞�

0

msf(Ds)dDs (4)

Using an LWF model, the mass ms is decomposed into the
ice part mi and the liquid part mw. Therefore we find

Ls,i =
∞�

D∗

mi(Ds)fm(Ds,�)dDs (5)

Ls,w =
∞�

D∗

mw(Ds)fm(Ds,�)dDs. (6)

Note that mi and mw are in general functions of Ds, i.e.,
snow flakes of different size have different liquid water frac-
tion. Here we assume that snow flakes smaller than D∗ have
already melted completely and are no longer snow flakes,
but rain drops. The size distribution of melting snowflakes
f(Ds,�) becomes a function of the liquid water fraction.

Using Eq. (??) we find the rate equation

∂Ls,w

∂t

����
melt

=
∞�

D∗

dmw

dt

����
melt

fm(Ds,�)dDs

=G(T,e)
∞�

D∗

Cs(Ds,�) fv(Ds,�) fm(Ds,�)dDs. (7)

To evaluate the integral on the r.h.s. we have to esti-
mate/reconstruct the liquid water fraction of individual snow
flakes, and specify D∗. Using a bulk approach we know only
the bulk quantities Ls,i and Ls,w, not the size-resolved � it-
self. Following SZ99 we assume

�(Ds)∼=
�

D∗
Ds

�ξ

(8)

SZ99 show that approximately �∼D1.3
m , i.e. with D3

m∼D2
s

we assume xi= 0.87.
To evaluate Eq. (7) we need to know the size distribution

of melting snowflakes. Again we follow SZ99 and use that
in steady state the number flux at a certain melted diameter
is constant with height due to mass convervation. From that
it follows that

fm(Dw,�) =
vs(Dw)

vm(Dw,�)
fw(Dw) (9)

with fw(Dw)dDw = f(Ds)dDs. In contrast to SZ99 we do
not attempt to match both, the snow distribution above and
the raindrop distribution below the melting layer, because for
size distributions of dry snow which are exponential in geo-
metric diameter rather than melted diameter, such a match-
ing is not exactly possible using the flux conservation alone.
Therefore we decide to match the distribution of melting
snow to the distribution of dry snow only.

2.4 Implementation

3 First results

4 Conclusions
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Explicit snow melting model: a case study
è Stratiform precipitation over Germany 

on 16 Nov 2010

Lindenberg cloud radar LDR



Explicit snow melting model: a case study
è Stratiform precipitation over Germany 

on 16 Nov 2010

Lindenberg cloud radar LDR



The Seifert and Beheng two-moment scheme: 
 Extended version by Blahak, Noppel, Beheng and Seifert

Number and mass concentrations of six different 
species

• cloud droplets
• rain drops
• cloud ice
• snow 
• graupel
• hail (including wet growth)

Process parameterizations:
• Drop activation/nucleation scheme using 

Segal&Khain (2006).
• Homogeneous ice nucleation based on 

Kärcher et al. (2008).
• Heterogeneous ice nucleation using the 

empirical scheme of Phillips et al. (2008).

12 prognostic variables compared to five 
of the operational one-moment 
microphysics. 



Diurnal cycle of precipitation (space-time averaged) 
è Diurnal cycle of hourly precipitation 

averaged over the evaluation domain.
è Two-moment scheme (colored lines) 

gives a better representation of the 
diurnal cycles compare to the 
operational one-moment scheme

è Currently the two-moment scheme is 
too expensive for operations, and the 
actual skill scores are only marginally 
improved.

10 Seifert et al.: Aerosol-cloud-precipitation effects over Germany

a) full evaluation domain b) southern subdomain

Fig. 7. Time series of hourly rain rate averaged over the (a) the southern evaluation domain, and (b) the full evaluation domain. Shown are
the radar data, the six two-moment microphysics experiments, and the control simulation using the operational one-moment scheme.

Fig. 8. Time series of convective cloud depth averaged over the full evaluation domain for the different model experiments.
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Advanced microphysics needs memory

è For a better representation of microphysical processes we tend to add more 
prognostic variables, e.g.,

è More moments of the particle size distribution, e.g., number and mass density or even 
a ,radar reflectivityʻ (2nd moment w.r.t. mass)

è Additional particle types like graupel, hail, drizzle or various ice modes
è Variable for meltwater on particles or rimed mass on snowflakes etc.
è Some variables to track available CCN and IN, i.e., a simple aerosol model.

è Additional prognostic variables become necessary when we start to resolve 
the spatial and temporal scales of the individual processes.

è Prognostic variables provide memory only for resolved processes. 
è Do we need memory for sub-grid parameterizations?



Does autoconversion need memory?

Schemes with no explicit assumptions about the evolution of the CSD:
- All Kessler- and Sundquist-type schemes including Liu and Daum (2004)
- Berry and Reinhardt (1974)
- Khairoutdinov and Kogan (2000)

Schemes with explicit parameterization of the evolution of the CSD:
- Lüpckes et al. (1989): Three drop classes including two cloud categories with explicit size distributions. 
- Seifert and Beheng (2001): Dynamics similarity using rain water as a proxy for large cloud droplets.
- Sant et al. (2012, submitted): Similar to Lüpckes et al. approach, but drizzle class instead of 2nd cloud mode.

Collision-coalescence of droplets is a key process 
for rain formation. Bulk schemes usually rely on 
autoconversion schemes.

The time evolution of the cloud droplet size 
distribution (CSD) leads to a memory effect:

Within the lifetime of a cloud parcels the CSD 
broadens (becomes positively skewed) which is 
crucial for autoconversion.

è More advanced schemes include memory to represent the broading 
of the cloud size distribution.



Does convection need memory?

è The lack of a representation of the cloud lifecycle, i.e., the lack of 
memory in current convection schemes makes a physically-based 
parameterization of convective precipitation very difficult.

è Convective clouds have a pronounced 
lifecycle

è Usually they need at least 15 min to develop 
precipitation.

è The precipitation efficiency of warm shallow 
clouds shows a dependency on cloud lifetime 
(Seifert and Stevens 2010, JAS).

A simple kinematic 1D cloud model:

from Golding (2000)



Statistical physics point of view...

è Large-scale forcing leads to the formation of clouds at the small scales, but their 
response back to the large scale is delayed, i.e., the small scales have memory and 
depend not only on the current large-scale state but also on previous large-scale 
states.

Recently Wouters and Lucarini (2012, J. Stat. Mech., P03003) have shown that a systematic coarse-
graining (using Ruelle response theory) of two weakly coupled nonlinear dynamical systems with slow 
variables X and fast variables Y leads to the following parameterized dynamics of X

which are the original dynamics of X and three parameterization of the dynamics of Y: a constant drift term, 
an additive noise term, and a memory term. Due to the memory term the system does in general show 
non-markovian behavior:
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Disentangling multi-level systems: averaging, correlations and memory

This indeed implies that on choosing M3 =
∫ ∞

0 dτh(τ, X(t−τ)) in equation (34), we obtain

δ(2)
Ψ,Ψ,bρ(A) = δ(1)

M3
ρ(A). It is important to note that, by construction, even if δ(1)

M3
ρ(A)

is a first-order perturbation of the expectation value of A, it is O(Ψ2). Therefore, all

terms such as δ(2)
M3,M3

ρ(A), δ(1)
M1,M3

ρ(A) presented in equation (40) are O(Ψ3) or higher, so
equation (41) is indeed correct. Analogously to the case for the noise discussed in the
previous section, the term hj(s, X) can be estimated from a trajectory of the system and
then used to provide the suitable parameterization. This concludes our derivation and
leads to the result anticipated in equation (34).

3.3. The independent coupling case

An especially interesting result can be obtained when considering the not uncommon
situation where the coupling is independent of the variable that it is affecting, i.e. ΨX(Y )
depends only on Y and ΨY (X) depends only on X. In this case, the reduced dynamical
system able to mimic the statistics of the full system for the observables depending on X
variables only up to the second order on the coupling strength can be written as

Ẋ(s) = FX(X(s)) + M1 + σ(s) +

∫ ∞

0

dτ h(s − τ, X ′(t − τ)). (57)

The first-order term M1 is now a constant drift term and the fluctuation term is an
additive noise term with correlations

〈σ(t1)σ(t2)〉 = 〈(ΨX(Y ) − M1)(ΨX(f t2−t1(Y )) − M1)〉ρ0,Y . (58)

The integral kernel of the memory term simplifies to

h(s, X) = ΨY (X)〈∂Y ΨX(f s(Y ))〉ρ0,Y . (59)

where the role of the impact of the memory effect of the Y variables on the memory of
the X system is especially clear.

4. Comparison with other methods of reduction of variables

The problem of reduction of variables is a classic topic in dynamical systems theory and
statistical mechanics. We will briefly discuss the relation between these methods and what
is presented here. A well-developed approach is the so-called averaging method [3, 14].
This method deals with coupled systems of the form

Ẋ = f(X, Y ), (60)

Ẏ =
1

ε
g(X, Y ). (61)

In the limit where the time scale difference between the two goes to infinity, on taking
ε → ∞, the trajectories of the original system converge on finite time scales to the
trajectories of an averaged version of the X system, namely

Ẋ ′ = ρY |X (f(X ′, Y )) , (62)

doi:10.1088/1742-5468/2012/03/P03003 14

J.S
tat.M

ech.
(2012)

P
03003

Disentangling multi-level systems: averaging, correlations and memory

Figure 2. Second-order response: diagram of the term describing the impact of
the fluctuations of the Y variables G(2)

A,Ψ,Ψ,a(τ1, τ2).

Figure 3. Second-order response: diagram of the term describing the memory
effect of the X variables on themselves mediated by the correlations of the Y

variables G(2)
A,Ψ,Ψ,b(τ1, τ2).

such that ∀A,

ρX,Y (A) = ρ̂2(A) + O(Ψ3). (32)

In the following, we show that if we decompose the coupling term ΨX(X, Y ) into its mean
w.r.t. ρ0,Y plus fluctuations in the form of a sum of separable contributions:

ΨX(X, Y ) = M(X) +
∑

i,j

aijΨ
′
X,1,i(X)Ψ′

X,2,j(Y ) (33)

this can be accomplished by the following reduced system:

Ẋ(t) = FX(X(t)) + M1(X(t)) +
∑

i,j

aijΨ
′
X,1,i(X(t))σj(t) +

∫ ∞

0

dτ h(τ, X(t − τ)) (34)

where σ mimics the correlations present in the fluctuations:

〈σj(t)σl(t + τ)〉 = 〈Ψ′
X,2,j(Y )Ψ′

X,2,l(f
τ
Y (Y ))〉, (35)

〈σj(t)〉 = 0. (36)

and h is a kernel representing the memory effected by the presence of unresolved variables

hj(τ, X) = 〈ΨY,i(X, Y )∂Y,iΨX,j(f
τ (X), f τ(Y ))〉ρ0,Y . (37)

doi:10.1088/1742-5468/2012/03/P03003 10

Fig. 2 of WL12: Fluctuation of Y affecting 
the slow variables X (,stochastic term‘).
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Fig. 3 of WL12: Memory effect describing how X 
affects itself through the lagged-response of Y.



PDF-based vs stochastic schemes

PDF-based subgrid scheme:
• can represent spatial heterogeneity
• can be used to achieve consistency 

between different parameterizations
• well established in the parameterization 

community
• prognostic schemes can provide large-

scale memory
• scale adaptivity can be included, but is 

challenging.
• Small scale spatial or temporal 

correlations cannot easily be included, i.e., 
lack of small-scale memory.

Stochastic parameterization:
• can represent spatial and temporal variability.
• can maybe be used to achieve consistency 

between different parameterizations.
• not well established in the parameterization 

community, but well established in theoretical 
physics and ensemble forecasting.

• scale adaptivity is, to some extent, intrinsic in 
the scheme.

• Small scale temporal correlations and 
memory can be represented.

(A stochastic scheme is actually sampling a much more 
complicated PDF than the ones assumed in current explicit 
PDF schemes.)
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• not well established in the parameterization 

community, but well established in theoretical 
physics and ensemble forecasting.

• scale adaptivity is, to some extent, intrinsic in 
the scheme.

• Small scale temporal correlations and 
memory can be represented.

(A stochastic scheme is actually sampling a much more 
complicated PDF than the ones assumed in current explicit 
PDF schemes.)

Mixed scheme with PDF-based large-scale state and a stochastic scheme 
sampling the small-scale variability including lifecycle and memory effects.



Summary and conclusions
è High resolution NWP needs a more detailed representation of cloud microphysics.
è This can be achieved be more sophisticated parameterizations which have additional 

prognostic variables.
è This allows us to choose the appropriate microphysics scheme for a certain scale, but 

unstructured grids with varying grid-spacing would still be challenging. 

è In sub-grid parameterizations, e.g., convection schemes, the microphysics is often 
treated quite poorly. 

è PDF-based schemes are attractive for parameterizations, but lack the small-scale 
correlations or memory.

è Therefore stochastic schemes with an explicit representation of cloud lifecycles might 
be an interesting extension of currently available parameterizations.



∆t ≈ τprocess

τprocess ! ∆t

!process ! ∆x

In large-scale models parameterization are built upon

but now we have to deal with

and this maybe even for spatially sub-grid processes with

i.e., even sub-grid processes can have memory.


