Diagnosing the assimilation performance in observation space

Niels Bormann Carla Cardinali Fernando Prates

Many thanks to Alan Geer, Peter Bauer, Mohamed Dahoui and Andrew Collard

Monitoring the performance of the assimilation system and the short range forecast

• ECMWF 4D-Var system handles a large variety of space and surface-based observations. It combines observations and atmospheric state a priori information by using a linearized and non-linear forecast model

•Effective monitoring of a such a complex system with 10⁸ degrees of freedom and 10⁷ observations is a necessity. Not just a few indicators but a more complex set of measures to answer questions like is needed:

>How much influent are the observations in the analysis?

>How much influence is given to the a priori information?

>How much does the estimate depend on one single influential observation?

Observation Contribution to the forecast

Did observations improve the forecast?

>How much is the observation impact on the forecast?

Enhanced "all-sky" system at ECMWF

- Direct assimilation of SSMI (F13 & F15) and AMSR-E radiances in 4DVAR:
 - Observations super-obbed to T255
 - Observation errors assumed to depend on cloudiness (symmetric model, see Alan's talk)
 - Observations assimilated over sea within ± 60° latitude
- Presented diagnostics based on T799 experiments for June/July 2009:
 - Separation between clear/cloudy based on threshold for liquid water path (0.05 kg/m²)
 - LWP derived from observations and First Guess \rightarrow 4 categories

Monitoring the performance of the assimilation system and

the short range forecast

$$\mathbf{x}_a = \mathbf{K}\mathbf{y} + (\mathbf{I}_q - \mathbf{H}\mathbf{K})\mathbf{x}_b$$

 $\mathbf{K} = \mathbf{K}(\mathbf{B}, \mathbf{R}, \mathbf{H})$

 $\mathbf{K}^{T} = \mathbf{K}^{T} (\mathbf{B}, \mathbf{R}, \mathbf{H})$

- **B** Model Accuracy
- **R** Observation Accuracy
- H Model

Analysis Observation Influence & DFS Short-Range Forecast Error Observation Contribution $\mathbf{K}^{T} \qquad \qquad \|e\|_{E} \mathbf{K}^{T} (\mathbf{y} - \mathbf{H}\mathbf{x}_{b}) \\ \|e\|_{E} \Rightarrow (x_{t} - x_{0}) \rightarrow Energy$ Cardinali et al 2004 Cardinali 2009 Cardinali 2009

Observation space

$$\mathbf{x}_{a} = \mathbf{K}\mathbf{y} + (\mathbf{I}_{q} - \mathbf{H}\mathbf{K})\mathbf{x}_{b}$$

Model space

$$\hat{\mathbf{y}} = \mathbf{H} \mathbf{x}_a = \mathbf{H} \mathbf{K} \mathbf{y} + (\mathbf{I} - \mathbf{H} \mathbf{K}) \mathbf{H} \mathbf{x}_b$$

$$\mathbf{K} = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}$$
$$= \mathbf{A} \mathbf{H}^T \mathbf{R}^{-1}$$

B(qxq)=Var(x_b) R(pxp)=Var(y)

$$\frac{\partial \mathbf{x}_a}{\partial \mathbf{y}} = \mathbf{K}^T$$

Forecast Sensitivity to the Observation

$$\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{y}} = \frac{\partial}{\partial \mathbf{y}} \mathbf{H} \mathbf{x}_{a} = \mathbf{K}^{T} \mathbf{H}^{T}$$

Analysis Sensitivity to the Observation

Forecast sensitivity to observation: Equations from a Roger Daley idea

J is a measure of the forecast error e.g dry energy norm

$$\frac{\partial J}{\partial \mathbf{y}} = \frac{\partial \mathbf{x}_a}{\partial \mathbf{y}} \frac{\partial J}{\partial \mathbf{x}_a}$$
Forecast error sensitivity to the analysis
Rabier F, et al. 1996
$$\frac{\partial \mathbf{x}_a}{\partial \mathbf{y}} = \mathbf{K}^T = \mathbf{R}^{-1}\mathbf{H}(\mathbf{B}^{-1} + \mathbf{H}^T\mathbf{R}^{-1}\mathbf{H})^{-1}$$
1) $\mathbf{A}^{-1}\mathbf{z} = \frac{\partial J}{\partial \mathbf{x}_a}$
Krylov Subspace Method
Henk A. van der Vorst 2003
2) $\frac{\partial J}{\partial \mathbf{y}} = \mathbf{R}^{-1}\mathbf{H}\mathbf{z}$

•Compute the forecast impact or forecast error variation δJ

$$<\frac{\partial J}{\partial \mathbf{x}_{a}}, \delta \mathbf{x}_{a} > = <\frac{\partial J}{\partial \mathbf{x}_{a}}, \mathbf{x}_{a} - \mathbf{x}_{b} > = <\frac{\partial J}{\partial \mathbf{x}_{a}}, \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}_{b}) > = <\mathbf{K}^{T} \frac{\partial J}{\partial \mathbf{x}_{a}}, (\mathbf{y} - \mathbf{H}\mathbf{x}_{b}) > = <\frac{\partial J}{\partial \mathbf{y}}, \delta \mathbf{y} >$$
$$\delta J = \frac{\partial J}{\partial \mathbf{y}}(\mathbf{y} - \mathbf{H}\mathbf{x}_{b})$$

Analysis and 24h Forecast error Contribution of SSM/I and AMSR-E

Analysis

and

24h FcE Contribution per Channels

SSM/I Impact

Observation Influence between 0 and 1

24 h Fc Error Contribution

Workshop on assimilating satellite observations of clouds and precipitation, June 2010

CECMWF

Diagnosing observation error covariances

- Several methods to estimate observation error covariances from Obs-FG departures, e.g.:
 - Hollingsworth/Lönnberg
 - Background error method
 - Desroziers et al. (2005) diagnostic: $\mathbf{\tilde{R}} = E \begin{bmatrix} \mathbf{d}_a & \mathbf{d}_b^T \end{bmatrix}$ (with \mathbf{d}_a and \mathbf{d}_b the analysis and background departure, respectively)
- All rely on (questionable) assumptions.
- Recently, results from these methods have been intercompared for clear-sky sounder radiances (Bormann and Bauer 2010, Bormann et al. 2010, QJ).
 - Here: Study extended to MW imager "allsky" radiances, but with Desroziers diagnostic only.

CMWF

Diagnosing observation error covariances: Some caveats

- Departure-based estimation of observation errors more difficult for humidity-sensitive radiances:
 - Background error relatively larger, with smaller spatial correlations.
 - ⇒ Background and observation error characteristics more difficult to separate.
 - ⇒ Behaviour of Desroziers diagnostic less clear.
- E.g., background departure covariances for AMSU-A and MHS:

Observation errors from Desroziers

Spatial observation error correlations from Desroziers diagnostic

Inter-channel observation error correlations from Desroziers diagnostic

Workshop on assimilating satellite observations of clouds and precipitation, June 2010

F-13 SSMI, July 2009:

Inter-channel observation error correlations from Desroziers diagnostic

F-13 SSMI: Clear observation/ clear First Guess

METOP-A MHS: Clear-sky system

Inter-channel observation error correlations from Desroziers diagnostic

Workshop on assimilating satellite observations of clouds and precipitation, June 2010

Aqua AMSR-E, July 2009:

Situation-dependence of inter-channel observation error correlations?

Eigenvectors of inter-channel error correlation matrix

Sqrt(ev) gives the error inflation factor for each eigenvector structure relative to a diagonal correlation matrix.

F-13 SSMI, Cloudy observation/cloudy First Guess:

Assimilation experiments with a single SSMI FOV

- Assimilate only a single SSMI FOV in 4DVAR no other observations.
- Two experiments: With and without taking inter-channel observation error correlations into account;
 σ₀ unchanged.
- Cases shown have cloudy observation and cloudy FG.

Status

- Recent advanced diagnostic tools are used to monitor the assimilation system performance.
- The microwave "allsky" data are influential in the analysis and improve the forecast.
- Observation error correlation is investigated.
- Estimates for inter-channel and spatial observation error correlations are becoming available.
- Main indication of strong inter-channel and some spatial observation error correlations for humidity channels, esp. for MW imager radiances in cloudy/rainy regions.

Recommendations

- Need further characterisation/development of methods to estimate observation errors and their correlations in real NWP systems
- Need further research into refining assumed observation errors, e.g.:
 - Effect of taking observation error correlations into account in the assimilation.
 - Forecast model error contributes significantly to observation operator error for humidity-sensitive observations in strongconstraint 4DVAR. How to deal with this?

