REPRESENTING CLOUD AND PRECIPITATION IN NWP MODELS IN CANADA

(Peter) M.K. Yau¹ and Jason Milbrandt²

¹McGill University, Montreal, Canada ²Environment Canada [RPN], Dorval, Canada

Environment Canada's forecast model GEM (Global Environmental Multiscale)

Grid configurations:

Global Variable

Global Uniform

Limited Area (LAM)

- medium-range (10-d)
- $\Delta x = 35 \text{ km} \rightarrow 25 \text{ km}$
- $\Delta t = 15 \min$

• short-range (48-h)

- $\Delta x = 15 \text{ km} \rightarrow 10 \text{ km}$
- $\Delta t = 7.5 \text{ min}$

Simple Cloud Scheme

- experimental
- short-range (24-h)
- $\Delta x = 2.5 \text{ km} \rightarrow 1 \text{ km}$
- Δt =1 min (Δt =30s) Detailed Microphysics Scheme

The simple cloud scheme (Sundqvist)

- Cloud-cover fraction is diagnosed (function of RH)
- Condensation occurs when RH exceeds a threshold (80% near surface)
- Total condensate (cloud water/ice) is prognostic (advected)
- Precipitation falls instantly to the ground there is no advection of precipitation
 RHcrit= 0.9 (cont.) or 0.8 (dashed)

The detailed microphysics scheme

Limited Area Model

Six hydrometeor categories:

2 liquid: *cloud*, *rain*

4 frozen: ice, snow, graupel, hail

Multi-moment scheme

Milbrandt and Yau (JAS 2005 a,b) Milbrandt and Yau (JAS, 2006 a,b) Gultepe and Milbrandt (Pure App. Geoph.,2007) Milbrandt et al. (MWR, 2008) Milbrandt et al. (MWR, 2010) Dawson et al. (MWR, 2010)

Scheme implemented in

GEM-LAM, Global variable (Canada) ARPS (U Oklahoma, US) WRF 3.2 (US)

•Overview of the scheme

- •Testing and improvement in IMPROVE-2 (GEM-LAM)
- •Forecast in winter Olympics 2010 (GEM-LAM)
- •Testing over Arctic (GEM-Global Variable)

\circ **ANAYLTICAL FUNCTION** \bigcirc 0 0 \circ 0 \bigcirc 0 **10**¹ \bigcirc 0 0 N(D) \circ **10**⁰ \bigcirc 0 $[m^{-3} \mu m^{-1}]$ 0 0 **10**-1 0 **10**⁻² 1 m³ 0 20 **40** 60 80 100 $D \left[\mu \mathbf{m} \right]$

Representing the size spectrum

BULK METHOD

Gamma Distribution Function:

 $N(D) = N_0 D^{\alpha} e^{-\lambda D}$

^{*} $Q = \rho q$ (mass content)

BULK METHOD

Predict evolution of

specific moment(s)

e.g. q_x , N_{Tx} , ... Implies prediction of evolution of parameters

i.e. N_{0x} , λ_x , ...

Size Distribution Function:

 $N_x(D) = N_{0x} D^{\alpha_x} e^{-\lambda_x D}$

Total number concentration, N_{Tx} $N_{Tx} \equiv \int_{0}^{\infty} N_x(D) dD = M_x(0)$

Mass mixing ratio, q_x

$$q_x \equiv \frac{c_x}{\rho} \int_0^\infty D^3 N_x(D) dD = \frac{c_x}{\rho} M_x(3),$$

where $m_x(D) = c_x D^3$, $\rho = air density$

<u>Radar reflectivity factor</u>, Z_x $Z_x \equiv \int_0^\infty D^6 N_x(D) dD = M_x(6)$

pth moment:
$$M_x(p) \equiv \int_0^\infty D^p N_x(D) dD = N_{0x} \frac{\Gamma(1 + \alpha_x + p)}{\lambda_x^{p+1+\alpha_x}}$$

BULK METHOD

Predict evolution of

specific moment(s)

e.g. **q**_x, **N**_{Tx}, ...

Implies prediction of evolution of parameters

i.e. N_{0x} , λ_x , ...

Size Distribution Function:

$$N_x(D) = N_{0x} D^{\alpha_x} e^{-\lambda_x D}$$

For every predicted moment, there is one prognostic parameter.

The remaining parameters are prescribed or diagnosed.

e.g. <u>One-moment scheme:</u>

 q_x is predicted; $\rightarrow \lambda_x$ is prognosed (N_{0x} and α_x are specified)

Two-moment scheme:

 q_x and N_{Tx} are predicted; $\rightarrow \lambda_x$ and N_{0x} are prognosed; (α_x is specified)

Three-moment scheme:

 q_x , N_{Tx} and Z_x are predicted; $\rightarrow \lambda_x$, N_{0x} and α_x is prognosed

$$\boldsymbol{p}^{\text{th}} \text{ moment:} \quad \boldsymbol{M}_{x}(p) \equiv \int_{0}^{\infty} D^{p} N_{x}(D) dD = N_{0x} \frac{\Gamma(1 + \alpha_{x} + p)}{\lambda_{x}^{p+1+\alpha_{x}}}$$

CLOSURE OF SYSTEM

Solve for shape parameter
$$\alpha$$
 from

$$\frac{c^2 N_T Z}{(\rho q)^2} = G(\alpha) = \frac{(\alpha + 6)(\alpha + 5)(\alpha + 4)}{(\alpha + 3)(\alpha + 2)(\alpha + 1)},$$

where $m(D) = cD^3$, and $\rho = air \, density$ Solve for slope parameter λ from

$$\lambda = \left(\frac{cN_T\Gamma(\alpha+4)}{\rho q\Gamma(\alpha+1)}\right)^{\frac{1}{3}}$$

Solve for intercept parameter N₀ from $N_0 = \frac{N_T \lambda^{\alpha+1}}{\Gamma(\alpha+1)}$

 $\rightarrow N_{\rm T}$ and q vary monotonically in a 1-moment scheme

Diagnostic closure for α in 2moment scheme

$$D_m = \left[\frac{\rho q}{c N_T}\right]^{\frac{1}{3}},$$

$$\alpha = f(D_m)$$

$r = M (p, \alpha_{est}) / M(p, \alpha_{corr})$

Verification and improvement of Multimoment scheme in GEM-LAM (1 km) in IMPROVE-2

CASE STUDY

November-December 2001: IMPROVE-2 Observational Campaign

<u>Improvement of Microphysical Parameterization through</u> <u>Observational Verification Experiment</u>

CASE STUDY

13-14 Dec 2001 case:

- chosen for study at W.M.O. International Cloud Modeling Workshop, Hamburg (July 2004)
- special issue of J. Atmos. Sci. (October 2005) dedicated to IMPROVE-2

Characteristics:

- large-scale baroclinic system
- strong low-level cross-barrier flow

Precipitation in IOP region:

- prefrontal showers;
- moderate to heavy stratiform rain (associated with mid-level baroclinic zone);
- surface frontal rain-band;
- transition to sporadic showers

13-14 Dec 2001 case:

 MM5 runs at 4-km and 1.3 km exhibited errors in surface precipitation attributed to problems associated with the microphysics (SM Reisner-2)

2000

1500

1000

500

BIAS SCORES

4-km MM5 Simulation

OBSERVED PRECIPITATION 1600 UTC 13 Dec - 0800 UTC (18 h)

Source: Garvert et al. (2005a) [J. Atmos. Sci.]

1-km GEM E. Reflectivity

18-h Accumulated Precipitation Observed vs. Simulated

No pronounced over prediction along lee side of Cascade

Observations

Aircraft flight tracks (2200 - 0200 UTC)

Source: Stoelinga et al. (2003) [Bull. Amer. Meteor. Soc.]

MICROPHYSICS:

Observations

Mean size inc. with dec. height

Source: Wood et al. (2005) [J. Atmos. Sci.]

Observations

Combined Observations for 2200–0200 UTC

 Q_x [g m⁻³] for 1-km (MY-3) Simulation

Cloud liquid water along P-3 flight legs

	Valley	Wina	lward	Lee		
Flight Leg	Leg 1	Leg 2	Leg 3	Leg 4	Leg 5	
Elevation [m]	2000	2500	3450	4000	3100	
(Pressure level [<u>hPa]</u>)	(775)	(725)	(650)	(600)	(675)	
Observation (g m ⁻³)	0.14	0.26	0.20	0.12	0.04	
Ave. [Peak]	[0.40]	[0.50]	[0.25]	[0.15]	[0.10]	
Model (1-km) (g m ⁻³)	0.22	0.08	0.00	0.00	0.01	
Ave. [Peak]	[0.27]	[0.34]	[0.09]	[0.00]	[0.02]	

Under prediction of vertical extent of cloud water

Ice/snow content along Corvair flight legs

Flight Leg	Leg a-b	Leg c-d	Leg e-f	Leg g-h
Elevation [m]	6000	5300	4900	4300
(Pressure level [hPa])	(450)	(500)	(525)	(625)
Observed Ave. (g m ⁻³)	0.12	0.17	0.25	0.27
Model (1-km) (g m ⁻³)	0.85	0.93	1.15	1.67
Ave. [Peak]	[1.34]	[1.33]	[1.67]	[1.94]

Over prediction of concentration of snow mass → too large deposition and/or riming

IMPROVEMENTS OF SNOW CATEGORY

- Diffusional growth
- Growth by riming

Electrostatic Analogy for Diffusional Growth of Ice Crystals $\frac{dm}{dt} = \frac{4\pi C(S_i - 1)}{AB_i}$

"The electrostatic analogy of the capacitance theory of ice crystal growth is <u>highly flawed</u> and does not produce the observed growth rates of ice crystals.

It severely <u>overpredicts</u> the growth rates in almost all cases [by a factor of 3 to 8+ for plates and 2 to 4 for columns] involving even simple hexagonal shapes."

Bailey and Hallet (2006)

Add CORRECTION FACTOR to DIFFUSIONAL GROWTH EQUATION

$$\frac{dm}{dt} = \frac{4\pi C(S_i - 1)}{AB_i} \longrightarrow \frac{dm}{dt} = \frac{4\pi C \cdot f_{corr}}{AB_i} \cdot (S_i - 1)$$

where f_{corr} must be < 1, with value justified by results

Sensitivity Tests for IMPROVE-2:

With decreasing f_{corr} , **SNOW** content (q_s) is reduced and **CLOUD** LWC (q_c) is increased

Other evidence:

Field et al. (2008) Westbrook et al. (2008)

RIMING of SNOW

Stochastic collection equation: (for category **x** collecting category **y**) $CL_{yx} = \frac{1}{\rho} \frac{\pi}{4} \int_{0}^{\infty} \int_{0}^{\infty} |V_x(D_x) - V_y(D_y)| (D_x + D_y)^2 m_y(D_y) E_{xy}(D_x, D_y) N_y(D_y) N_x(D_x) dD_y dD_x$ **COLLECTION EFFICIENCY**

- For the collection efficiency, $E_{cs} = 1$ is often assumed (for collection of *cloud* by *snow*)
- If $E_{cs} < 1$, the snow riming rate will be <u>overestimated</u>

RIMING of SNOW

*Wang and Ji, 1992

- Works for D_c ~ 15-30 μm, and D_s ~ 150-1500 μm
- Reduces riming rate 10-80% (vs. E_{cs} = 1)

Test of 2-moment microphysics in Vancouver Olympics 2010 in 1 km GEM-LAM

Nesting strategy for LAM-V10 system

 3 nested LAM integrations twice daily from 0000 and 1200 UTC GEM-Regional forecasts:

Verification for LAM-V10

Olympic Autostation Network (OAN):

- approx. 40 standard and special surface observing sites (hourly or synop available on GTS)
- large number (relatively) of surface stations
- concentrated in small region

Verification Examples

Observations courtesy of George Isaac

Experimental field: *Solid-to-Liquid ratio*

Testing of 2-moment microphysics in Global GEM variable 15 km over the Arctic

30 day simulation – July 2008 over Arctic

Polar-GEM:

	July 2008 SUND total PR (mm)													
)	25	50	75	100	125	150	175	200	250	300	400	500	600	4

July 2008 GPCP total PR (mm)													
0	25	50	75	100	125	150	175	200	250	300	400	500	600

PRECIPITATION

SENSITIVITY TO TIME STEP

60-h Simulation

SENSITIVITY TO TIME STEP

60-h Simulation ($\Delta t = 60$ s)

SUMMARY

1) Multi-moment mixed phase bulk cloud microphysical schemes have been developed and implemented in GEM-LAM and GEM-Global Variable

2) Comparison with in-situ field measurements allows improvements in the scheme

3) Implementation in GEM-Global Uniform is planned but still needs work to address

- a) time splitting for microphysics
- b) subgrid scale cloud fraction
- c) simplification to allow for a mixture of higher and lower moment hydrometeor categories

SEDIMENTATION: Bulk scheme

Effects on sedimentation terms $(Q = \rho q)$

TM better than DM0 better than SM DIFFERENCE RELATED TO SIZE SORTING

Disadvantages of 1-moment scheme

a) Inconsistency in modeling physical processes

From closure relation, N_T and q vary monotonically $\rightarrow N_T$ increases or decreases with q, but

in breakup, N_T increases but q = constant, and in diffusional growth, q increases but $N_T = constant$.

c) Inconsistency in modeling size sorting in sedimentation

 \rightarrow mean size increases with decreasing height, but not necessarily true in 1-moment as mean diameter is

$$D_m = \left[\frac{\rho q}{cN_T}\right]^{\frac{1}{3}}$$

Disadvantages of 2-moment fixed α scheme in sedimentation

Diagnosed $\alpha \rightarrow$ sedimentation results in larger mean size (larger D_m) but narrower spectrum (larger α)

How well do the various bulk scheme predict <u>sources/sinks</u>?

$$\frac{dq_x}{dt}\Big|_{s} = \frac{dq_x}{dt}\Big|_{prod} + \frac{dq_x}{dt}\Big|_{proc2} + \dots$$
e.g.
$$\frac{dq_x}{dt}\Big|_{cL} = \int_{0}^{\infty} \frac{dm(D)}{dt}\Big|_{cL} N(D)dD$$
CONTINUOUS COLLECTION
of CLOUD WATER
$$\frac{dm(D)}{dt}\Big|_{cL} = \frac{\pi D^2}{4}V(D)E_{xc}\rho q_c = \left(\frac{\pi}{4}E_{xc}\rho q_c\right)D^{2+b_x}$$

$$\frac{dq_x}{dt}\Big|_{cL} = \left(\frac{\pi}{4}E_{xc}\rho q_c\right)\int_{0}^{\infty}D^{2+b_x}N(D)dD$$

$$p^{\text{th moment:}}$$

$$M_x(p) \equiv \int_{0}^{\infty}D^p N_x(D)dD$$

$$\frac{dq_x}{dt}\Big|_{cL} \propto M_x(2+b_x)$$

How well do the various bulk scheme predict sedimentation and sources/sinks?

TM and DIAG DM schemes better than SM AND FIXED DM schemes