

Cloud Scattering and Surface Emission in (CRTM)

Fuzhong Weng

NOAA' Center for Satellite Applications and Research and Joint Center for Satellite Data Assimilation

Outline

- Latest Updates on CRTM
- Microwave and Infrared Emissivity Models
- New Global Emissivity Data Base and Modeling Theory
- Impact of Emissivity Data and Models on NWP
- Summary and Conclusions

CRTM: Community Radiative Transfer Model

Forward CRTM

Physical ProcessesSurface emissivity
and reflectivityCloud scattering
and emission

Aerosol scattering and emission Gaseous

absorption

Jacobian CRTM

Latest Updates on CRTM

- Computational efficiency Improved
 - Forward model speedup by a factor 3
 - Jacobian model speedup by a factor 2

• Multiple transmittance algorithm framework

OPTRANODPS modelSSU modelSSMIS and AMSUA Zeeman models

- Visible and UV sensors and molecular scattering added
- Surface emissivity/reflectivity module
 - BRDF for solar reflection over ocean
 - Improved IR ocean emissivity model
 - MW snow and ice empirical models for additional sensors
- Additional Instruments

FY3-MWTS	FY-3 MWHS	FY-3 MWRI	MSG-SEVIRI
FY3-IRS	DMSP-SSMIS	GOES-R ABI	

CRTM Simulated BT Spectrum for Hyperspectral Infrared Sensors

Inter-Comparison between Different RTM for Simulating MSG SEVIRI Data

Cloud Absorption/Scattering Module

Cloud Types: water ice rain snow graupel hail

Look-up Table:

mass extinction coefficient single scattering albedo Asymmetric factor Legendre phase coefficients

✓ spherical cloud droplets (Simmer, 1994)

✓ non-spherical ice cloud particles (Yang et al., 1997; Macke, Mishenko et al.; Baum et al., 2001)

Shortwave Properties of Clouds Cloud Mask Bands

Infrared Properties of Clouds Cloud Mask Bands

Infrared Properties of Clear Skies & Cirrus CO₂ Slicing Bands

Observed and CRTM Simulated SEVIRI Channel 3

0030 Z May 20, 2008, 7.35µm

Observed and CRTM Simulated SEVIRI Channel 4

0030 Z May 20, 2008, 8.7µm

SEVIRI Observations vs Simulations

Channel Clear-Sky		r-Sky	ECMWF		ECMWF+IR Cloud		
	Bias	Sigma	Bias	Sigma	Bias	Sigma	
1	-30.14	36.39	-4.06	15.90	-1.29	2.02	
2	-4.39	8.71	-0.02	6.33	-0.79	2.20	
3	-12.46	18.35	-0.72	10.80	-0.83	1.86	
4	-34.12	40.41	-2.46	17.05	-0.11	1.38	
5	-19.10	23.73	-2.19	9.73	-0.44	1.46	
6	-36.02	42.64	-1.82	17.97	0.48	1.48	
7	-35.18	41.73	-1.80	17.82	0.36	1.47	
8	-20.97	26.85	-0.93	12.54	-0.40	1.56	

Datasets Used for CRTM Validation

CloudSat data

- Afternoon satellite, Local time ascending node 1:31pm
- Cloud Geometrical Profile: 2B-GEOPROF
- Cloud Classification: 2B-CLDCLASS
- Cloud Liquid/ICE Water Content & particle size: 2B-CWC-RO

• Analyses

Temperature, water vapor and O₃ profiles and surface state

- ECMWF analysis data set: ECMWF-AUX
- -NCEP surface analysis data set

NOAA 18 data

Afternoon satellite, Local time ascending node 1:38pm

- -AMSUA Level 1B and Level 2 data set
- MHS Level 1B and Level 2 data set
- AVHRR/3 Level 1B (GAC) data set

CRTM Validation Using CloudSat Data NOAA 18 Orbit Data Matching

Using SNO method to match the polar-orbiting satellite radiometers.

Matching Criteria for CloudSat and NOAA 18 Data

A total of 31 orbit data meet the requirements.

Handling of Cloud Inhomogeneity Effects on CRTM Validation

(Chen et al., 2008, JGR)

Effects of Cloudy Components in CRTM

Effects of Cloudy Components in CRTM

Effects of Cloudy Components in CRTM

Atmospheric Transmittance

Atmospheric Transmittance at 183.3 \pm 1 GHz

Atmospheric Transmittance at 183.3 ± 3 GHz

A typical channel for atmospheric profiling can become surface sensitive in certain conditions (e.g. dry moisture, high elevation)

Sensitivity of BT to Surface Emissivity

	Ts = 230 K and TPW = 0.5 mm					
Fæq	Ps = 600 (mb)			Ps = 1000 (mb)		
(GHz)	Tď(K)	Ţ	ΔT _a (K)	Td(K)	Ţ	Δ́T _a (K)
6.925	1.50	0.99	9.08	4.00	0.98	8.87
10.65	1.60	0.99	9.07	4,40	0.98	8.84
18.7	2.30	0.99	9.02	6.20	0.97	8.70
23.8	3.30	0.98	8.93	8.50	0.96	8.51
36.5	7.10	0.97	8.63	19.10	0.91	7.69
50.3	49.30	0.77	5.59	112.50	0.49	2.29
52.8	111.20	0.49	2.34	188.60	0.15	0.25
89	8.20	0.96	8.54	22.30	0.90	7.46
150	4.40	0.98	8.84	12.50	0.94	8.21
183.3 ± 7	16.60	0.93	7.89	43.50	0.81	6.02
183.3 ± 3	SS.30	0.75	5.24	104.10	0.54	2.71
183.3±1	134.60	0.39	1.50	160.10	0.29	0.81

 $\Delta T_a = \tau (T_s - T_d) \Delta \varepsilon \qquad \Delta \varepsilon = 0.04$

Uncertainty in Surface emissivity of 5-10% will produce brightness temperature uncertainty up to several degrees!

CRTM Baseline Surface Emissivity Modules

Surface Emissivity Modeling

- **Open water** two-scale roughness theory
- Sea ice Coherent reflection
- **Canopy** Four layer clustering scattering
- **Bare soil** Coherent reflection and surface roughness
- **Snow/desert** Random media

Land Infrared Emissivity Database

NPOESS emissivity - GFS Surface Types

Major Problems

in Baseline Surface Emissivity Models

- FASTEM3 displays a large bias at low (< 20 GHz) and high (> 60 GHz) frequencies
- Microwave land emissivity model (MLEM) displays certain bias over snow and desert surfaces

Planned Upgrade to CRTM Emissivity Models

- Ocean microwave emissivity, FASTEM4
 - ✓ Liu, Weng, and English, TGRS, 2010
- Two-layer snow microwave emissivity model
 - ✓ Yan, Weng, and Liang (2010)
- A fast multi-layer snow microwave emissivity model based on QCA/DMRT model
 - ✓ Liang, Weng, and Yan (2010)
- Desert microwave emissivity library
 - \checkmark Yan and Weng, submitted to TGRS (2010)
- UWISC IR land emissivity data base from JPL/MODIS
 - ✓ Borbas ana Seaman (200X)

FASTEM-4

- Revised Double-Debye permitivity model with variable salinity & intermolecular interaction
- A factor 2 of slope variance from Durden and Vesecky spectrum model upwind and cross-wind slopes
- Variable foam emissivity depending on angle and polarization (non-unity)
- Two-scale approximation with an automatic cutoff wavenumber calculation

FASTEM-4

Double Debye's Model with Intermolecular Interaction

Figure 1. Panels (a) and (b) represent the real and imaginary parts of the permittivity. Panels (c) and (d) are a zoom-in part for low frequencies. The back line is for fresh water and the red line is for salted water. The water temperature is 25°C. The salinity of sea water is 35‰. The solid lines represent model results. The diamond symbols are for measurements.

$$\varepsilon = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_1}{1 + j2\pi f\tau_1} + \frac{\varepsilon_1 - \varepsilon_{\infty}}{1 + j2\pi f\tau_2} + \frac{j}{2\pi f\varepsilon_0}$$
 Intermolecular interaction

Durden and Vesecky (DV), DV2 and Cox-Munk Models

Figure 2. Slope variances for the DV, DV2 spectrums and Cox-Munk as a function of the wind speed at 10 meter above the surface.

Layered Snow Emissivity Modeling from QCA/DMRT

Dense media radiative transfer equations in layer *i*:

$$\cos\theta \frac{d\bar{I}_i(\theta, z)}{dz} = -\kappa_{e_i} \cdot \bar{I}_i(\theta, z) + \kappa_{a_i} T^i + \int_0^{\pi} d\theta' \sin\theta' \overline{P}_i(\theta; \theta') \bar{I}_i(\theta', z)$$

Validation of DMRT Brightness Temperatures

TB polarization difference comparisons

- 1) Modeled T_b show close agreement with the ground Tb observation.
- 2) Polarization difference (18.7v-18.7h and 36.5v-36.5h) predicted by DMRT show close agreement with observations.
- 3) Frequency dependence(18.7v-36.5v and 18.7h-36.5h, right figure) predicted by DMRT agrres well with observations.

GBMR Point Tb Observations Compared with QCA/DMRT Prediction

Uses of New Infrared Emissivity in CRTM

Univ. Wisconsin MODIS-derived emissivity (July 2008) - GFS surface types

GrELS emissivity (July) - GFS surface types

Impacts of Emissivity Data Base in GFS

Experiment setup:

• Experiments are set up in GSI with two months data on 2008 (January, and July), CRTM v2.0 with NPOESS database, and UWIREMIS database

Conclusions to be drawn:

• UWIREMIS database has some positive impact in winter season, especially for Southern Hemisphere. However, it is inferior to the CRTM baseline IR land emissivity in Northern Hemisphere during summer time

Impacts of Emissivity Data Base in GFS

Changes of assimilated data volumes for different sensors (MODIS V.S. NPOESS) on January 22 UTC 00, 2008

Satellite Sensor

Summary

- CRTM version 2 releases resulted in some significant positive impacts
- New surface emissivity data bases including IR and MW are being assessed in GFS
- Land MW emissivity library has been developed and shows some positive impact on forecast skill
- Several land IR emissivity data bases are tested. MODIS data set has some positive impacts on forecasts during the cold seasons
- MW ocean emissivity calculation has been updated through FASTEM4 which has significantly improved the emissivity simulations at low and high frequencies
- A two-layer microwave snow emissivity model has been developed to characterize emissivity at a wide frequency range for stratified but shallow snow
- •A fast multi-layer microwave snow emissivity model, applicable for highly stratified snow is being developed based on QCA/DMRT model

Acknowledgements

Personnel Name Fuzhong Weng Yong Han Paul van Delst Quanhua (Mark) Liu Banghua Yan Yong Chen David Groff Ron Vogel Ping Yang **Ralf Bennarts** Jean-Luc Moncet Jun Li Tom Greenwalt Eric Wood Al Gasiewski K.N.Liou/S. Ou Ben Ruston Steve English

Organization STAR STAR NCEP Perot System Univ of MD CIRA NCEP **IMSG** Texas A&M Univ Wisconsin AER CIMSS CIMSS Princeton Univ Univ of Co UCLA NRL Metoffice

Areas of Expertise

CRTM technical oversight/emissivity **CRTM** interface with NESDIS **CRTM** interface with NCEP Transfer scheme Surface emissivity **CRTM** Impacts in GFS transmittance data base IR surface emissivity Cloud/aerosol scattering LUT Radiative transfer scheme Absorption model ABI retrieval algorithm SOI Snow emissivity MW radiative transfer Radiative transfer scheme IR land emissivity MW Ocean Emissivity