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1. SOME INTRODUCTORY IDEAS

1.1 Introduction

Theuseof numericalmodelsfor weatherpredictioninvolvesthe solutionof a setof couplednon-linearmpartial dif-

ferentialequationsin generaltheseequationglescribethreeimportantdynamicalprocesses—ad¢tion,adjust-
ment(how themassandwind fieldsadjustto oneanotheranddiffusion.In thisnotewe will concentrateiponhow

to solve simplelinearone-dimensionalersionsof theequationsvhich describeeachof theseprocessesThesecan
be coweniently dened ftom the shallw-water equations in which

(@) the earth's rotation is ignored
(b)  there is no motion in the -direction
(c) there are noariations in they -direction

The set of equations we are going to consider is then

ou _ _0h_ 0 oup]
% 85x Tz ax0
oh _ _,0u 0 oh[]
a - hox T 9x0K 950

L

adjustmentdiffusion

Linearising the equations about a basic sfatg H) constant in space and timees

ou, Ou _ _,0h, 0[pdun
W"L“Oax' gax+6x oxU
oh, b . _pdu, dpedhp
ot +u06x - 0x +6x oxU

whereu andh aretheperturbationsn the x -componenbf velocity andthe heightof thefree surface. The parts
of these equations describing the three main processes arewas.follo

Advection
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In general the one-dimensional linearisedeation equation can be written as

As well asinvestigating the linearadwectionequationjt is necessaryo considerthe non-linearproblem.For this
we use the one-dimensional non-linearesddn equation

6u+ ou

ot Tox 0
Adjustment

ou oh _

E'l-ga =0

oh ou _

E+Hax =0

These are often called the one-dimensional linearisettyyaave equations.

Diffusion
du _ 0 p0un
ot 0dxU0 oxU
0h _ 0 0RO
ot 0xU0 oxU

The general form of the one-dimensionafudifon equation (with constant eddyfdgivity K) is

(7]
S
S

2
= Ka
t ox

()]
N

Many of the ideasandtechniquesusedto solve thesesimplified equationscanbe extendedto dealwith the full
primitive equations.

Finite differencetechniquesvere,historically, themostcommonapproacho solving partialdifferentialequations
(PDE's)in meteorologybut, sincea numberof yearsnow, spectraltechniquediave becomevery usefulin global
modelsandlocal representationsuchasthefinite element®or thelocal spectramethodarebecomingncreasingly
researched, mainly in connection with the masgirallel-processing machines.

1.2 Classification of PDE's

Mostmeteorologicaproblemsfall into oneof threecateyories—thesarereferredto asboundaryvalueproblems,
initial valueproblemsandeigervalueproblems.n this notewe will be mainly concernedwvith initial valueprob-
lems.
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1.2 (a) Boundary value pblems.

The problemis to determine¢ in a certaindomainD, wherethe differentialequationgoverning ¢ within D is
L(¢) = f,andB(d) = g onthe boundary; here L and B ardaliéntial operators.

L(¢) = f in solution domain [
B(¢) = g onthe boundary

Typical exkamples of this type of problemviolve the solution of the Helmholtz or Poisson equations.

1.2 (b) Initial value poblems.

Thesearepropagtionproblemsn whichwe wantto predictthebehaiour of asystengiventheinitial conditions.
Thisis doneby solvingthedifferentialequationL (¢) = f within D wheretheinitial conditionis I(¢) = A and
theprescribecconditionsontheopenboundariesareB(¢) = g.Problemsnvolving thesolutionof theadwection
equation, graity wave equations and diifsion equationdll into this catgory.

1.2 (c) Eigrvalue poblems.

Theproblemisto determineh and¢ suchthat L(¢) = A¢ issatisfiedwithin domainD. Problemsof thistype
occur in baroclinic instability studies.

An alternatve method of classification has beeniged for linear second order PDE's of the form
00

0% 0% 4 g0 4 9,00,y —
aazz+2b0§0ﬂ+caq2+2d0§+2€0ﬂ+f¢ =0

Theclassificatioris basednthepropertieof the characteristicgnot discussedhere)of theequation We find that

therearethreebasictypesof equationyperbolic,parabolicandelliptic. Hyperbolicandparabolicequationsare
initial value problems, whereas an elliptic equation is a boundéug yproblem.

TABLE 1. CHARACTERISTICSOF HYPERBOLIC, PARABOLIC AND ELLIPTIC PDES

Type CZ?;;acct‘i[g::tic Condition Example
hyperbolic Real b°—ac>0 Wave equation
parabolic Imaginary bz—ac = 0 Diffusion equation

elliptic non-«istent b*—ac<0 Poisson equation

1.3 Existence and uniqueness

Let us consider an initialalue problem for a real function of time only

D= fey v = v ®

wheref is a knevn function of the tw variables.

We could be unable to s@weplicitly Eq. (1)and therefore we ask ourse$sthe folleving questions.
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1) How are we to kne that the initial @alue problen{1) actually has a solution?
2) How do we knav that there is only one solutign(¢) of (1)?
3) Why bother asking the first wquestions?

The answetto the third questionis thatour equationis justanapproximatiorto the physical problemwe wantto
solve and,thereforejf it hasnotoneandonly onesolutionit cannotbeagoodrepresentatioof the physicalproc-
ess;thatis, the problemis notwell posed On the otherhand,if the problemis well posedwe canhopeto getby
somemeansasolutioncloseenoughto therealsolutionevenif we areunableto find theexactsolutionor theexact
solutionis notananalyticalone.The situationis thenexactly the sameasin the theoryof limits whereit is often
possibleto prove thatasequencef functionsy, (¢) hasalimit withoutour having to know whatthislimit is, and
we can use 3nmember of the sequence from a place anols to represent an approximation to the limit.

This suggests the folleng algorithm for preing the aistence of a solutioy (¢) of (1):
() Construct a sequence of functiong(¢) that come closer and closer to solv{iy
(b)  Shaw that the sequence of functiopg(¢) has a limity(z) on a suitable inteal ty<t<t,+0a;
(c) Prove thaty(¢) is a solution of1) on this interal.

Thisis thesocalledsuccessie approximation®r Picarditerates By thismethodit is possibleto shav thefollow-
ing
Picard's Theorem:

Let f andg—;c be continuous in the rectangle <¢<t,+a, |y —y¢ < b. Then the initial-alue problem

-ty vt = v

has a unique solutiop(¢) on the interal ¢;<t<t,+a.

Unfortunatelythe equationsnvolvedin meteorologyarenotordinarydifferentialequationdut partial differential
equationsandthe proof of existenceanduniquenessf its solutionis not asstraightforvard asapplyingPicard's
theoremNeverthelesstheexamplesenesto illustratetheimportanceor proving anexistenceanduniquenesthe-
orem as a hunting license to go looking for this solution or for a close approximation to it.

For thelinearequationsve aredealingwith in this setof lectureswe canfind the generalanalyticsolutionto the
equatiorand,thereforedo notneedto prove theexistencetheoremBut it will still beniceto provetheuniqueness
of it, givenasuitablesetof initial andboundaryconditions Neverthelessthis falls outsidethe scopeof thecourse
and we will only hope that such a uniqueness could bespro

1.4 Discretization

The non-linearequationgdescribingthe evolution of the atmospher&o not have analyticalsolutionsevenif the
problemis well posed An analyticalfunctionis the mostperfectway of representing given physicalfield asit
gives us the alue of this field in anof the infinite number of points of space and atiastant in time.

If ananalyticalsolutiondoesnot exist, we have to resortto numericaltechniquego find a certainapproximation
to thetrue solutionof the systemof equationsthatis, we have to usecomputersBut computercannotdealwith
infinite amountsof numberssowe have to represenbur meteorologicafields by afinite numberof values.This
is called the discretization process.

As a simple gample consider the linear one-dimensional@tionary problem
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whereH is alineardifferentialspaceoperator(thoughthetechniquesonsidereatanalsobeappliedto non-linear
problems)Wewill assumehat¢ is specifiecat (IV + 1) gridpointsin ourdomain(0 < x < L), andthatthereare
suitableboundaryconditionsfor ¢ . We now wantto considetow we cannumericallyfind ¢/ d¢ , giventhegrid
point values¢ ; —that is we only consider the space discretization.

Thecommonway of tacklingthis problemis to simply expressthe derivativeswhich occuron theright handside
of (2) in termsof the differencesetweerthe gridpointvaluesof ¢ . Thisis thefinite differencetechniquewhich
will bediscussedtlengthlater Notethatwhenusingthis techniqueno assumptioris madeabouthow ¢ varies
between the grid points.

An alternatie approactis to expand¢ in termsof afinite seriesof (N + 1) linearly independentunctionse,,, ,
wherem = m;, ...m, wherem,—m, = N, so that

o= 5 on(d)e,(x) ®3)

=m

This serieds only anexactsolutionof theoriginal PDEin very specialcircumstancest hereforewhen(3) is sub-
stituted into(2) there will be a residud®

R = zdtm > 0 H(e,)

We now wantto choosethetime derivativesd¢,,,/d¢ by minimising R in someway. Onemethodfor doingthis
is to use a least square approach—we thea teaminimise

I:J‘Rdx

with respect to the time deatives. Carrying this out and rearranginges:

do

Zd—tlj'emeldx = Z¢lIemH(el)dx; m=my,..m, (4)

This equation could also be dexdl using the Galerkin method in which we set
J’Rqudx =0, i=12..N+1
wherethe ; canbeary setof linearlyindependentestfunctions.If theexpansiorfunctionsareusedastestfunc-
tionswe get(4). Sincetheexpansiorfunctionsareknown (3) canbeusedto provide theexpansiorcoeficients ¢,
given the gridpointalues¢ ;. Also the intgrals
J’emeldx andJ'emH(el)dx

in (4) canbe calculatedexactly for all possiblevaluesof m and! . Therefore(4) reducego asetof coupledordi-
nary diferential equations that can be sahvfor thed¢,,/dt given the¢,, . The complete solution is then
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(E:Z%e

This general approach is often referred to as the Galerkin technique.

Forthecasewheretheexpansiorfunctionsareorthogonalve endupwith (N + 1) uncoupledrdinarydifferential
equations for the rate of change of tkpansion codicients

d
% = ;quIemH(el)dx; m=mg..m,

An exampleof this kind of approachs the spectraimethodin which a Fourier seriesis used.In this case(3) be-
comes

S

where the,, are comple Fourier coeficients andM = N/2.

M
b= 3 n(t)exp

m =-M

[
Oooo;

With spherical geometryt is natural to use spherical harmonics.

For the spectralmethodthe expansionfunctionsare global. An alternatve approacthis to usea setof expansion
functionswhich areonly locally non-zero;this is the basisof thefinite elementmethod With this methodwe still
have a setof nodes(i.e. grid points)with nodalvalues¢ ;, but nov we assumethatthe variationin ¢ within an
element(i.e. asetof nodes)canbedescribedy alow-orderpolynomial,with therequirementhatthereis conti-
nuity in ¢ betweemdjacenklementsThe simplestcaseis to assumea linear variationin ¢ acrossanelement
which has only tw nodes (the end points); i.e. a linear pigse fit. Then(3) becomes

N+1

o= 3 0j(t)e;(x)

Jj=1

wherethe ¢ ; arethe nodalvaluesandthe e ;(x) are"hat” functions(sometimesalledchapeadunctions)asin
Fig. 1.

The expansionfunctionsarenot orthogonal put they arenearlyso;thereforethe integralswhich occurin (4) can
be easilyevaluated.Theresultof this processs to producea setof coupledequationgrom which the time deriv-
ative can be determined.
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Xj-2 Xj— Xj Xj+
Ax

Figure 1. Representation of a "hat" function or pigse linear finite element.

An interestingfeatureof the Galerkintechniqueis thatif the original equation(2) hasa quadraticinvariant(e.g.
enegy)

L 2
0E _ . _q)_
—at—O WI'[hE—‘C[zdx

thenthis propertyis retainedwvhena Galerkinapproximatioris madefor the spatialvariations(whenfinite differ-
encesareusedthereis no guarante®f this happening)However, notethatquadratidnvariances lost whentime
stepping is introduced.

The spectralandfinite elementmethodswill be dealtwith in Sectionss and7, but now we will concentrateipon
the finite diference technique.

1.5 Convergence, consistency and stability

(@) Corvergence:a discretizedsolution of a differential equationis said to be cornvergent if it
approachethe solutionof the continuousequatiorwhenthe discretizatiorbecomesiner andfiner
(thatis the distancebetweengrid pointsin the finite differencetechniquebecomesmaller or the
number of basis functions in the spectral or the finite element techniques becomes higher).

We would like to ensurecorvergence but this is difficult to do. However thereis atheoremwhich overcomeghis
problem, lut before it can be stated we need to introducenere definitions.

(b)  Consisteng: a discretizationtechniqueis consistentwith a PDE if the truncationerror of the

discretized equation tends to zero as the discretization becomes finer and finer
Notethatconsisteng meansonly thatthe discretizedequationis similar to the continuousequation
but this doesnot guaranteeby itself that the correspondingsolutions are close to each other
(corvergence).
Consisteng is easyto test. SupposaT)’} is thetruesolutionof the PDE (2) atpositionx ; andtime
t, . This solutionis now substitutednto thefinite differenceequationand Taylor expansionsused
to expresseverythingin termsof the behaiour of ¢ at position x; andtime ¢, . Rearranginghe
equation then ges:
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J

If the truncationerror E approachegzero as the grid length and time step approachzero, the

scheme is consistent Hereafter consistend be assumed without comment

(c)  Stability: adiscretizatiorschemas stableif their solutionsareuniformly boundedunctionsof the
initial statefor ary value of A¢ small enough,thatis if the numericalsolution doesnot go to
infinity as¢ increases.

There are arious techniques for testing stabilitgree of which will be described later

The consisteng andstability of discretizatiorschemeganbeinvesticated;thereforewe cancheckif thescheme
is corvergent by making use of the folling theorem.

The Lax—Richtmger Theorem

If a discretization sheme is consistent and stabtleen it is comergent (the cowerse is also true).

2. FINITE DIFFERENCES

2.1 Introduction

Supposeve have anintenval L whichis coveredwith N + 1 equallyspacedgrid points. The gridlengthis then
Ax = L/N andthegrid pointsareatx; = (j—1)Ax, j = 1,2,..N +1. Letthevalueof ¢ atx; berepre-
sented byp ; .

We arenow goingto derive expressionavhich canbe usedto give an approximatevalue of a derivative at a grid
pointin termsof grid-pointvalues.In orderto constructa finite differenceapproximatiorto thefirst derivative at
point; , we haveinitially to deriveexpressionsgor ¢ ;_, and¢ ;, , in termsof thebehaiourof ¢ atpoint; . Using
a Taylor xpansion gies:

2 3
Oje1 = 0o, +00) = ¢+ 0, D+ B Drg [BED ©)
3
02 = 00, 0x) = 0/ Du s B Dy, AXT ©)

Solving(5) and(6) for ¢, gives

e ¢j+A1x_¢j+E; E :_¢_,,[Ax o' [AxD

J Oord YJj+6 [
. ¢'_¢‘—l . - u[AxD e |:A.7C O
¢, = ijj B E =90 %%, O3ro

Alternatively, subtracting6) from (5) leaves

T S

2
’ . -_— mx rrr rrr
0 = TSI ED B = B0, 07, ) )
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WhenE is omitted,theseexpressiongjive theforward,backwardandcentredfinite differenceapproximation$o
thefirst derivative. Thetruncationerroris givenby E andtheorderof theapproximatioris definedby the lowest
powerof Ax in E . Thereforeheforwardandbackwardschemesrefirst orderandthe centredschemds second
order The higherthe orderof the schemethe greateris the accurag of the finite differenceapproximationAll
threeschemesreconsistenif thedervativesareboundedbecauséhentheerrorapproachezerowhenAx tends
to zero.

A fourthorderschemesanbederivedby using(5) and(6) with expansion®f ¢ (x ; + 2Ax) and¢(x; —2Ax) . The
result is:

s 0

The usual finite dference approximation to the second dtive, derved from(5) and(6), is

v 9120494,
Ax®

+0O(Ax%) )

P,
Finally it is worth introducing the notation that is often used for finiteed#hces:

¢' /2_¢'— /2
6mx¢j = j+mmij =

5 = Givmot i o
;oo 2

Using this notatior§7) and(9) become

0/ =50, =8,0, and ¢, =50,

2.2 The linear advection equation: Analytical solution

The one-dimensional linearised adtion equation is

%"'uo% =0; ¢ = d(xt); u,= constan (10)

For corvenience gclic boundary conditions will be prescribed fpratx = 0 andx = L.
$(0,2) = ¢(L,?)
The initial condition ford is
¢(x,0) = f(x) O<sx<L with f(x+L)=f(x)

In orderto find ananalyticalsolutionfor thelinearadwectionequationwe make useof thetechniqueof separation
of variables:

We look for a solutiorp (x, ¢) of the form

Meteorological Training Course Lecture Series
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¢(x,2) = X(2)T(2)

substituting in the partial dérential equatiori10) we get
dT dX _
X(x)d_t +u°T(t)E =0

dividing by X (x)T'(¢) we get

1dT _ 1dX

Tde ~ "X dr

theleft-handsideis afunctionof ¢ only while theright-handsideis afunctionof x only: thereforethey canbe
equal only if both of them are constant

1dX dx

}—(a =A a = AX
1dT _ dT _

we hare two "eigevalue problems" for the operatadg dx andd/d¢, whose solutions are

X = X exp[Ax]
T = Tyexp[—ught]

and the solution of the adetion equation is
0(x,£) = XoToexplAx —uht] = doexplA Ha—ugt)] = f(x—uqt) (11)
Thereforewe getafunction propagtingwithout changeof shapealongthe positive x axiswith speedu, (phase

speed).

If we have periodicboundaryconditions,A hasonly certain(imaginary)values,if they aresinusoidalwith time,
wemusthave A = ik wherek isthewave numberandku, = w thefrequeng. Of coursef ¢ istorepresena
physical field, this field is the real part of the found solution.

As theadwectionequationis linear, ary linearcombinationof solutionsof thetype foundis alsoa solutionof the
equation As all the componentvavesof a disturbancdravel with the samespeedhereis no dispersionandthe
disturbance does not change shape with time.
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0 ECMWEF, 2002



Numerical methods

3

A —lUg—
7~
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/
7/ \
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Figure 2. Representation of the solution of the analytical lineactidn equation.

It is interesting to consider the "eggt defined by
L
E() = 3[0%dx (12)
|
0
Multiplying the adection equation by and intgrating with respect ta then gives

L .2
0E _ U009,

= _Horek
ot 2) 0x =3[90 =0

Therefore the engy is consergd—as indeed it must be since there is no change in shape of the disturbance.

2.3 Space discretization: Dispersion and round-off error

Let us consider ain the one-dimensional linear ad¥ion equation

Ju ou _
E-FCE =0 (13)

and represent the space dative by means of centred finite féifences

u ; U;pq1—U;
= _oZir 71
ot ¢ 20x (14)

To sole this space discretized equation we try a solution of similar form to the continuous equation, namely
u;(t) = Oe{U(t)exp(ikjix)} (15)

Substituting in the discretized equatidd) we get

du |, . sinkAx _
Et—+|k%7 e U =0 (16)

whose solution is
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U = Uyexp(ikC t) (17)
and therefore the phase speed is
* _ . sinkAx _
C =055 =fk) (18)

A dispersionphasespeeddependenbn wave numberk ) is introducedby the spacadiscretizatiorin the senseof
decreasing the computed phase speed compared with the continuous solution.

The phase speed becomes 0 whé&x = 11 (wavelengthA = 2Ax)

The group elocity (at which engy is carried) is

Cy= Q(é‘e_kcl = C in the continuous equation
C; = d(lélf ) - Ccog(kAx) in the discretized equation

which reaches aalue of—C (propagtion in the wrong direction) for the shortesveskAx = .

It isilluminating to seehow accuratehafinite differenceapproximatiorrepresentthederivative of aknown func-
tion. Supposep (x) = Oe{ exp(ikx)} , wherek = 21/ L isthewavenumbeand L is thewavelength.Substi-
tuting ¢ into (7) gives (dropping théle and ignoringE').

o' = exp([ik(x + Ax)] —exp[ik(x —Ax)]) _
g 20x -

[BinkAx[]
U kAx U

exgggl:x] (exp[ikAx]—exp[-ikAx])

ikexplikx]

Thereforethefinite differenceapproximatioris equalto theexactvaluemultiplied by acorrectionfactor F' . If the
wavelength consists df grid lengths we hae £ = 21//Ax , and the correctiorattor becomes

f =4 _

Plotting F' against/ for theseschemegseeFig. 4 lateron) shavs thataboutl10 grid lengthsarerequiredto de-
scribeaccuratelythe behaiour of onewave andthe shortestvavesarebadly mistreatedThe plotsalsoshaw that
thefourth-orderschemds moreaccurateghanthe second-ordeschemeThis canbeillustratedby examiningthe
behaiour of F' for the lage wavelengths [ large,q small). Using seriesxpansions we find that
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2
second order F = 1—% = 1+O(q2)
4

fourth order F = 1_(?],_0 = 1+0(¢"

Sincethe correctvalueof F' is unity, this shavs that secondandfourth-orderscheme$have secondandfourth-
order errors. In general, F = 1+ 0O(q") the scheme is said to leth order

2.4 Time discretization: Stability and computational mode

Finite differencesanbeusedfor time derivativesaswell asspacealerivatives—thais werepresentime derivatives
in termsof valuesatdiscreteimelevels.If At isthetimeintenal (usuallycalledthetime step)then thetimelevels
aregivenby ¢, = nAt withn = 0,1, ... Now thegrid-pointvalueof ¢ atpositionx; attime ¢, is denotedoy

.

Usually either fonard or centred time dérences are used:

+1

(i fmwmdggg_*ﬂéﬁjﬁ+omn

J
) L I YA 2
(ii) centredDEDj R ZW +O(At")

Once agin, centred dferences are more accurate than mavtime diferences

In orderto solve aninitial valueproblemwe mustcastthe PDEin finite differenceform. The differenceequation
is thenmanipulatedoasto give analgorithmwhich givesthegrid-pointvalueof ¢ attimelevel (n + 1) interms
of the \alues at earlier timeVels.

As anexampleconsidettheadwectionequationwith aforwardtime differenceandbackward (upstream¥pacedif-
ference

0 _ o 070

09 J +u0gbj _Aij—lg =0 (u>0)

— + _— e
ot "o« At

This schemds describedasbeingfirst orderin time andspace Manipulationof the differenceequationprovides
the follonving algorithm for solving the equation

uoAt

07" = 0 —a(@i0f )i o= 2= (19)

Knowing ¢ ; everywhereattime n allows usto calculatethenew valueattime (n + 1) grid pointby grid point;
this is an gample of arexplicit scheme

Let’s try a solution of the form

0 = doexpi(kjix —wnit)

Substituting in (19) we get
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exp(—iwt) = —aisin(kAx)

wherew = a +ib (complex number).
If b>0 ¢;? is exponentially increasing with time (unstable)
if b<0 the solution is damped
if b=0 the solution is neutral (amplitude constant in time)
Also, as we hae approximated the operat%, we introduce yet another dispersion

Another scheme that arises is

07T G051 = 072001 -0] )

Now we have a setof simultaneougquationsvhich have to be solved for the ¢” * - thisisan exampleof anim-
plicit scheme

Both the abore schemesreexamplesof two-time-level schemesThatis the finite differenceequationonly uses
information from tvo time levels. Later we will come acrosgamples of three-time-el schemes.

Justbecauseave canproduceanalgorithmfor solvinganequationjt doesnotfollow thatits usewill providereal-
istic solutions For example jif we useaforwardtime differenceandcentredspacelifferencen theadwectionequa-
tion we get

077" = 05 -5(87 -0

Thisis anexplicit two-time-level schemewhichis first orderin time andsecondrderin spacelt appeardo bea
suitablealgorithmfor solvingthe equationHowever it will be shovn laterthatit hasthe propertythatthe differ-
ence between itxact and numerical solution increasgp@nentially with time—the scheme is unstable.

Theratio a is calledthe C.FL. number(after Courant,Freidrichsand Levy), or sometimegust the Courant
number We will see that it is of great significance when we consider the stability of numerical schemes.

In three-time-lgel schemes there is axt@ complication. Let us consider the (leapfrog) scheme:

0" = o T a9, —07_))

andtry a solution ¢’; = doA,exp(ikjlx) wherethe superind& of A meansexponentiation!f the modulusof
A is greaterthanone, the solutionis unstablelf it is smallerthanonethe solutionis dampedandif it is onethe
solution is neutral. N@ substitute into the discretized equation and we get

A%+ 2iph-1 = 0; p=—asin(kAx)

which has tw solutions
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A=ip+41l —pZA ————— 5 —A—t———zl physical mode
x — 0;At -
A=ip—-41 —p2 ————————————— >-1  computational mode
Ax - 0;At - 0

It is now necessaryo showv thatthe schemeaunderconsiderations convergentby makinguseof the Lax—Richt-
meyertheoremlt caneasilybeshavn thattheabove schemesreconsistentandsoconvergences assuredf they
arestable.To do this we have to considerthe behaiour of initial errorsandexamineif they grow exponentially
However, there are arious vays in which this can be done. Here we will consider only three approaches.

(@) The enegy methodin which the schemeis consideredunstableif the "enegy" definedearlier
increases with time.

(b)  ThevonNeumanrseriesmethodin whichthebehaiour of asingleFourierharmonids studiedhe
stability of all admissible harmonics is a necessary condition for the stability of the scheme.

(c)  The matrix method

2.5 Stability analysis of various schemes

2.5 (a) Methods of stability analysis .

() Enegy method.

Earlierwe foundthat, for the adwectionequationwith periodicboundaryconditionstheenegy E(¢) wascon-
sened. e nav want to study an analogous quantiy given by

1N+1 2
E = izz(q)/ ) Ax
j=

As anexampleofzhcw to applythis methodwewill studythestability of (19). Thefirst stepis to derive anexpres-
sion for (¢ **)" . This is done by multiplying19) by (¢ ** + ¢") to give

@2 = (") = —a (0" TT+ ") (9" 9" 1)

Substituting for¢j *1 in the RHS and rearranging

n+1.2 n\2 n\2 n 2 n n 2
@7 =07 = —a{(®)) = (97D} —a(l-a)(®]-97_,)
Summing eer all gridpoints and using the boundary conditidn= ¢% ., leaves
N+1

BB = a(l-a) 3 (6" —¢"_,)Ax
j=2

Therefore, in order to pvent the engyy graving from step to step we require
(@& a=0 which impliesu,=0

At
(b) (1-a)=0 which impliesa = uA_x <1
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This meanghat,having choserthegrid length Ax , we will only geta stablesolutionif thetime stepis choserso
that Az < Ax/u . But notethatif we ensurestability by having 0 < a < 1, theenepy is forcedto decayfrom step
to step.

The enegy methodis a quite generalapproachor analysingdifferenceschemesndcanbe usedfor non-linear
problemswith complicatedboundaryconditions.However for mostcasest requiresconsiderableffort andinge-
nuity in order to devie practical stability criteria.

(ii) Fourier series method

Thiswasintroducedby J.von Neumanrand,by comparisorwith theenegy methodit is simpleto applyandpro-
vides considerable insight into the performance dédiht schemes.

Once agin consider the original adetion equatiorf10). If the initial condition is gien by

8(x,0) = f(x) = Cyexplikal; & = 2'm

wherem is the number of eves, then we kne that the true solution is
d(x,t) = Crexplik(x—ugt)] (20)
Now consider the finite diérence equation. The initial condition is
00 = Cexplikx;]
and, in general, the solution is/gn by
0% = (\)"Crexplikx ] (21)

whereA,, is a complg quantity which depends upon the finitefeliénce scheme and thewemunberk .

If A, = [Ny expliB] we hae ¢ = Ck|)\k|"exp[ik%cj+%a%} (22)

Therefore,|A,| gives the fractional change in amplitude/timestep @&matovides information about the phase.
Comparing(22) with the analytic solutio20) shavs the follaving.
(@) Thestability of the finite diference scheme is assureqwﬂ <1 forall %

(b)  Thenumericalschemehasintroduceda fictitious dampingof D = |A;| pertime step;if D = 1
(no damping) the scheme is said taneetral

(c)  Thephasespeedf the numericalsolutionis givenby ¢ = -8/ kAt ; thisis usuallydifferentfrom
u, andso a phaseerror is introduced.A corvenientmeasureof this is the relative phasespeed
r=c/ug.

(d)  Since the speedof the disturbancedependsupon the wave number there is computational
dispersionthis meanghata disturbancemadeup of a variety of Fouriercomponentsvill notkeep
its shape. In other evds the groupelocity ¢, = 0(kc)/dk is not the same as the phaséouity.

For partialdifferentialequationsvith constantoeficients,the stability criteriongivenin (a)is too stringentsince
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alegitimateexponentialgrowth of a physically realisticsolutionmaybe possible Thereforethe stability criterion
should be

I\ < 1+0(A8)

which allows anexponential but not faster growth of the solution.However, whenwe know thatthetrue solution
does not gre (as for the adsction equation), it is customary to ensure that< 1.

(iif) The matrix method

Let U, be aector at timenAt ; if we can &pressU,, . ; as

U, .1 = AU, (scheme of tw time levels)

n
whereA is called the amplification matrix, the method runs asvaio
Let V, be the eigerectors ofA corresponding to the eigeaiuesA,,
AV, = AV,

We project ectorsU onto the space defined by these eigetors
_ k
Uo = ZUOVk
Therefore we obtain, by repeated multiplication by the amplification matrix
U, = U,

where superinde(n) stands for thexg@onential operation.
This solution will be bounded when . « for all |\, <1 and, in this case, the scheme is stable.
This methodis equivalentto the von Newmanmethodwhenthe Fourierbasisfunctionsareeigervaluesof theam-

plification matrix.

2.5 (b) Frward time sbhemes.

(i) Forward time diferencing with non-centred spacefeitncing

This is the scheme introducedSuibsection 2.4nd may coveniently be written as

_ught

07" = 0f —a(e] -0 e

Thisis anexplicit two-time-level schemevhichisfirst orderin spaceandtime. It is calledupwindschemef u,> 0
and dovnwind if z,<0.

Substitutingd’; = (A,)"Cexplikx;] into the abwe algorithm yields
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Ap = 1—a{l-exp[-ikAx]}
=1-0(1 - cos(kAx +isinkAx))

Since},, is comple we can gpress it as
A, = |\ (cosB +isinB)

Substitutingthis expressiorin the above, andequatingreal andimaginarypartsgivestwo equationdor |A;| and
0 in terms ofa andkAx

|\ cos®
|A | SinG

1-a(l-coskAx)
—asinkAx

To study the stability we require arpeession foifA,| . Squaring and adding thervgs

NP = 12k (0 —1)(1- coskAx)

Sincel - coskAx > 0 we canonly satisfythestability criterion |A,| < 1 if o((a —1) < 0) ; thereforewe require
uy20 (upwind) and uyAt/Ax <1 (CFL limit) (the sameresultaswhenthe enegy methodwas used).The
scheme is said to be conditionally stable.

To studythedampingandphaseerrors,it is oftencorvenientto think in termsof wavelengthsconsistingof / grid
lengths;we thenreplacek by 2mAx/[. It canthenbe showvn thatthe dampingpertime step (D) andrelative
phase errofr) can be gpressed as

1

D = [1+2a(a-1)(1-cos)]’; g = 2F (23)
1 U —asing U

r = —atanp——m———— 24

aq Dl—a(l—cos;)% (24)

Thecharacteristicef aschemeaanbeconvenientlydisplayedy plottinggraphsof D andr againstl/ for various
choicesof a . However, to make comparisonbetweerscheme®asierwe will only considervaluesof D andr
forl = 2,3,4,6 and10with a = 0.5. Theseareshovn in Table2. Clearly the upstreandifferencingscheme
reproduceshe phasespeedvery well (thoughtherearephaseerrorswhena #1: r<1 whenO<a<1/2 and
r>1 whenl/2<a <1), but the damping isxzessie.

(i) Forward time diferencing with centred spacefdifencing (FTCS)

n+1 n n n
0; =9, pisa=9ian_,
At °0 2ax O

Using the Burier series method it is easy to wtihat

NP = 1+ a’(sinkAx)?

Therefore,|>\k|2 = 1 alwaysandsotheschemads unstabldor all valuesof a andZ ; theschemas thensaidto be
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absolutelyunstablealthoughthe spacediscretizatioris moreaccuratehanin the upwindschemewhichis condi-
tionally stable.

(iii) Implicit Schemes.

Considewhathappensvhenthe spacederivative is replacedby the averagevalueof the centredspacedifference
attimelevelsn andn + 1. Usingforwardtime differencingandthe notationfor spatialdifferencesntroducedn
Subsection 1.4ve hae

¢n+l ¢n u
j — Y n n+1l
_j'"zt_i+70(62x¢j+62x¢j )=20

Rearranging yields

0+ @5 -00T = 03 -G a- 07 @)

Thisis animplicit two-time-level schemedthe Crank—Nicolsorschemewhichis secondrderin time andsecond
orderin space Performinga stability analysesn the usualway we find that |A,| = 1. Thereforethe schemes
absolutelystableandneutral(no damping),but further analysisshawvs thattherearesignificantphaseerrors(see
Table 2.

Notethattheproblemwith usingthistypeof schemas thatwe cannotsimply expresghenew value¢’} *Linterms
of known valuesat previous times. Thus,we have a large numberof simultaneousquationswvhich have to be
solved (i.e. atridiagonalmatrix hasto be inverted).For simplecaseghis canbe doneexactly, but for morecom-
plicated problemsxpensie successe approximation methods Vv&to be used.

This implicit approach can be generalised to
¢n i - ¢n n n
e (BB, 0+ B1B,, 05 ) = 0
wheref3, andf, ., are weights such th#, +f,,, = 1.
There are three special cases which should be highlighted:
@ B,
(b) B,

(c) B, = B,+1 = 1/2 yieldsthe schemedescribedabore in which the deriativesat time levels n
andn + 1 are equally weighted.

1 andf, ., = O gives the absolutely unstable FTCS scheme.

0 andf, ,,; = 1 results in the fully fonard implicit scheme.

A stability analysis of the general schemevehthat

AP = 1+ a’B2(sinkAx)?

1+0a’p2, (sinkAx)®

Thereforethere is absoluteinstability if the presentvaluesare weighted more heavily than the future ones
(B, >1/2, B, .1<1/2) whereaghereis absolutestability if moreor equalweightis givento the future values

(B, =172, (B,+121/2))

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 21



9 Numerical methods
A\~ 4

2.5 (c) The leapfig sheme

Thisis probablythe mostcommonschemausedfor meteorologicaproblems.The"leapfrog“refersto thecentred
time difference which is used in conjunction with centred spaderdifces

07 = " T —a(e], 1~ 07 ) (26)

Thisis anexplicit three-time-lgel schemewhichis seconcbrderin spaceandtime. Usingthe Fourierseriesech-
nique to test stabilitywe find that

A +2ipA-1=0; p = -asinkAx
giving

A=ipt4l —p2
Thereforetherearetwo solutionsfor A whichis aconsequencef usingathree-time-leel schemgin generalan

m -time-level scheme will hee m — 1 solutions forA with each solution being referred to as a mode).

It canbeshownn thatfor oneof themodesh — 1 asAx, At — 0; thisisreferredto asthephysicalmode.Theother
mode has no pisical significance and is called the computational mode (for this koede-1 asAx, At — 0).

If ol <1 wehave |p| <1 andso Ajl—p2 is real. ConsequentlyfA| = 1 for bothmodesandsothe schemds
conditionally stable and neutral. Further analysisstitat for the pysical mode

r = _i atan[l}—_p Eﬁ p=a Sinq' q=21[ (27)
ag g/ _p ’ L’

whereador thecomputationainodethephasespeeds in theoppositedirectionto u, (r = —1) andtheamplitude
of themodechangesignevery time step.In generalthe solutionto thefinite differenceequatiorwill bea com-
bination of the pysical and computational modes.

Thetablesof D andr against! (Table2) for thephysicalmoderevealthatthephaseerrorsareworsethanfor the
upstreandifferenceschemeput the leapfrogscheméhasthe importantpropertythatthereis no dampingfor ary
choice ofa .

Thecharacteristicef theleapfrogschemecanbeimprovedby usingafourth orderfinite differenceschemdor the

spacederivative (seeSubsectior?.1)—the schemas thensaidto have fourth-orderadvection.Table2 shavs that

this hasno effect on the damping(the schemaemainsneutral),but it doesleadto animprovementin the phase
speed. Havever the stability condition is momore restrictie since we require < 0.73.

Theleapfrogschemes very popularbecausét is simple,secondorderandneutral;however therearestill phase
errorsand computationatispersion Also, the computationamodehasto be contendedvith andthe dependent
variable has to bedpt at tvo time levels.

To startthe leap-frogschemat is customaryto usea forwardtime stepand,in orderto suppresseparatiorof the
solutions at odd andren time steps, it is usual to either

0] use an occasional foasd time step

(i)  use a weak time filter of the type
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E=

n-1 _ ,n-1 *n—2 n-1 n
i =0; Tta(d; T-20; "+0;)

where the tilde denotes the filteremlue @ is typically 0.005).

Anothervariantof theleapfrogschemas the semi-momentunapproximationFor this, thewind field is smoothed
before multiplying by the derative. Using the notation introduced$ubsection 2,lthe scheme becomes

X

5,0 = —u*5.0
For constant , this reduces t(26).

2.5 (d) The Lax—@hdioff scheme

This is a usefulschemébecausét is secondorderin spaceandtime. but (unlike theleapfrogschemeljt is only a
two-time-level scheme and so has no computational mode.

TheLax—Wendrof schemeannotbeconstructedy anindependenthoiceof finite differenceapproximationgor
the space and time deaiives. It is dened from a second-order accurasyIbr series xpansion

242
O(x,t+At) = §(x, t)+At% +A7t%

Using the adection equation this becomes

09 , 1obt" 9%

O (x, t +A2) = ¢(x, t)+—u0Atax 7 ot (28)

Replacing the deratives by second order accurate finitdedifnce approximationggs
n+l _ ,n O, n n +C(2n 2n+n 29
07 = 07— 5(0] =07 D)+ S (0] 1207+ 07 1) (29)

This scheme can be replaced by one in which there arstéps:

. .. 1/2 . . .
® provisional values of ¢’J’-:1/2 are calculatedusing a forward time step with centred space

differencing

n+1/2 1,.n n a,,.n n
Oir1z = 50501+ 97 —5(95.1-07)

(i) Thed” *1 are calculatedfrom centredspaceand time differencesusing the provisional values
+1/
¢j+ 1/2

n+l _ ,n n+1/2 n+1/2
¢j = ¢j—0((¢j+1/2—¢j—1/2)

The stability analysis skns that
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1

D = [1-a’(1-o*)(1-con); g = 2F (30

and so the scheme is stableyided a < 1. The ratio of the phase speed to theeation \elocity is given by:

| —asi O
S atam———od

(31)
¢  [-o®(1-cosg)C

Table3 shavsthatthecharacteristicef the Lax—\Wendrof schemdall betweerthoseof theupstreanmdifferencing
and leapfrog schemes. The characteristics of the scheme can beeitnpyaising fourth order adgtion.
2.5 (e) Intuitive look at stability

If theinformationfor the futuretime step“comesfrom” insidetheinterval usedfor the computatiorof the space
derivadive, theschemas stable Otherwiset is unstableThe CFL numbera is thefractionof Ax travelledby an
air parcel duringh¢ seconds.

-Downwind scheme (unstable):

Uo X: point where the information
> coPnes from (x— UpAt

Leapfrog (conditionally stable)

Implicit (unconditionallystable).Theinterval coversthewhole x-axisbecauseve have to solve a coupledsystem
of equations including all the points:
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2.6 Group velocity

For a non-dispersie equation planewave solutionshave the form exp[ik(x —ct)] , wherethe phasevelocity ¢
is independenof thewave numberk . However, if thereis dispersiorthe wave solutionshave the sameform, but
now ¢ = c(k). Even if the original equation is non-dispeksia discrete model will introduce dispersion.

In order to understand thefedt of dispersion it is necessary to introduce the grelgity ¢, given by

0
Cq— a—k(kc)

This representshe speedof propagtion of the enegy of wave numberkz andwhenthereis dispersionwe have
¢ = c(k) andcy = c4(k) . For a non disperge mediumey = c.

For thelinearadwectionequationwe know thatary disturbanceshouldmove without changeof shapewith thead-
vectingvelocity u, (whichis independentf % ). However, whenthe problemis solved numericallywe find that
¢ = c(k) and dispersion is introducedbiFexample, the phaseelocity from the leapfrog scheme is such that

c 1 0 —asing O 21

= —atanpr——————— = =
Ug O(qataDl—O((l—COSq)BI q l

However the group slocity gives

o
(o]

_ cosy
o [1-(asing)]"?

~
1
I

Q
&

Therefore, whert = 0.5 we get the follwing (Table 2.

TABLE 2. RATIO OF THE RELATIVE PHASEERROR (r) AND THE RELATIVE GROUP VELOCITY ERROR (rg) FOR
DIFFERENTWAVELENGTHS.

l 2 3 4 6 10
r 0.00 0.43 0.67 0.86 0.92
-1.00 -0.55 0.00 0.59 0.85

Ty

Notethatthetwo gridlengthwaves(/ = 2) travel in thewrongdirectionwith speedu,, whilst thelongerwaves
move with a speed approaching the exting \elocity.

To illustrate the effect of computationadispersionconsiderthreecasegaken from Vichenevetskyand Bowles
(1982).Eachintegrationwas carriedout with the leapfrogschemeusinga = 0.2(henceary effectsaremainly
due to the space discretization).

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 25



9 Numerical methods
A\~ 4

For the caseshavn in Fig. 3 (a), the long-wave componentsnove with a groupvelocity of aboutu, (r,=0 for
thelong waves)whilst thetwo-gridlengthwavestravel upstreanwith speedcg(l = 2) = —uy; thefour gridlength
waves are stationarysince c,(l = 4) = 0. Therefore,during the integration the computationaldispersionhas
caused broadeningof the disturbancdthis is not causedy dissipationbecausehe leapfrogschemes neutral)
and has generated parasitic short gridlengires/which trael upstream.

Thedisturbanceshawvn in Fig. 3 (b) is dominatedby waveswith [ = 2. Thereforethe dominantfeatureof thein-
tegration is the upstream m@ment of the w&ve paclets with a groupelocity of about-u,

a)
n -

Figure 3. llustration of computational dispersion using the leapfrog schema wit) . Taken from
Vichenevetskyand Bavles (1982).

In thelastcaseFig. 3 (¢), theinitial disturbanceconsistsof two-gridlengthwavessuperimposedpona broader
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scalefeature.Consequentlyasin case(a), the two-gridlengthwaves move upstreamwhilst the partof theinitial
disturbance composed of thegar wavelengths mees davnstream with a groupelocity of abouty,.

Numericalschemeshouldbe examinedfor their computationadispersionHowever, in practicethe effects of
computationalispersiorareobscuredecaus®f the dissipationinherentin mary numericalscheme®r the ex-
plicit diffusion that is introduced to control theangridlength veves.

2.7 Choosing a scheme

Thereis agreatvarietyof finite differenceschemesndsoit is worth consideringvhatfactorsshouldbetakeninto
account when choosing one.

(@) It is desirableto have high-ordertruncationerrorsfor the spaceandtime differencesin general
centred diferences are more accurate than one-sidéerélifces.

(b) Ideallywe would like the phasesrrorsanddampingto be small; however, it is usuallynecessaryo
compromisebetweenthesetwo. Plotsof D andr against/ area corvenientway of examining
these aspects.

(c) Theadwantageof anexplicit schemds thatit is easyto program,but it will only be conditionally
stableandsothe choiceof time stepis limited. Implicit schemesreabsolutelystable;howvever the
price we pay for this is that atery time step a system of simultaneous equations has to lee solv

(d) If the schemehas more than two time levels there will be computationalmodesand possibly
separatiorof the solutionat odd and even timesteps Also more fields of the dependentariable
have to be stored than for the aohtime-level scheme.
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Figure 4. Response functioR | against number of gridlengths peewvelength () for various semi-discrete
versionsof theone-dimensiondinearadwectionequationNotethatfor theleapfrogschemeR is thesameasthe

correction actor F' introduced irSubsection 2.3
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uUpstream difterencing Leapfrog

e o e ‘ - I .
! \ A
8 . . l LY s L
s AEE Teioo T Jzzo 4i=5 TEi00
Lax-Wendroff Conserving leapfrog

/

-8 4 L
R} | N SRR
°2 [ N SRR P

~2 L

) é 3 L} s [{ '} J \l

Fourth order leapfrog

LA

~2 L.l

=20 At=5 T=100

Figure 5. Solutions of the linear abtion equation usingavious numerical methods for a Gaussian initial
disturbance and a uniform wind. Full line:- numerical solution; dot-dashed %aet golution.
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Figure 0. Continued
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Figure 6. Solutions of the linear abtion equation usingavious numerical methods for the Gtey test . Full
line:- numerical solution; dot-dashed lingaet solution..

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 31



3

Numerical methods

Semi-Lagrangian (lin.) Semi-Lagrangian (quad.)
1 - . 1 —~ . ‘
; \
l\ '\
2 L I‘ 3 I
e\
I .
s L ,. \c .8
. \
J \
« L / ) \
’ \
/ \
L 7/ ‘\ 2l 7/ \
7 N 7 N
/ . / .
e — % I e e R
n=989 At=1.0 T=989.0 n=989 At=1.0 T=989.0
Semi-Lagrangian (lin.) Semi-Lagrangian (cub.sp.)
. S R TR TR
I\
e ,
a Ll Y I U, .
e\
Iy
% | f v - - 3
R /. .\\ ]
+ \
./ ‘\:
2 L/ e N 2
. AN
e AN
< N : .
R S | B M R . N ¢ — v s
n=330 At=3.0 T=990.0 n=989 At=1.0 T=989.0
Spectral Finite element

A e s m s - s amm ¥ R e NN N T
n=3190 At=.31 T=988.9 n=1735 At=.57 T=98S.0

Figure 0. Continued.

A corvenientway of comparingschemess to considertheir behaiour for the longerwaves(/ largeso £ and
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g = 21/1 small). For eachschemewe canderive expressiongor D andr in termsof ; thesecanthenbe ex-
pandedaspower seriesunderthe assumptiorthat ¢ is small.If D = 1+ O(g") theschemés saidto have n th
orderdissipationwhereas: = 1+ O(q") indicateshatthereare n th orderphaseerrors.The higherthe orderof
accurag of the amplitude and phase speed the better

Sometimedt is interestingo examinejusttheeffect of spacaliscretizationUsinga singleFouriercomponentthe
semi-discrete finite diérence ‘ersion of the linear agé¢tion equation may begressed as:

%—1’ = _ikuyRo

where R is the responsdunction. For the original PDE, R = 1 for all 2 and,ideally, our differencescheme
shouldreproducehis. Fig. 4 shavs R for secondandfourth orderspacedifferencingasa functionof [ (thisis
the sameasthe correctionfactor F describedn Subsectior.3); alsoshavn arethe valuesfor the spectraland
finite elementimethodsvhich arediscussedater Theseresultssuggesthatthe standardinite differenceapproxi-
mations for the adaction are inferior to the spectral and finite element representations.

As well asexaminingthe behaviour of schemesheoreticallyit is oftenilluminating to actuallysolve the equation
numericallyusingthevarioustechniqueskor exampleGadd(1978)consideredhebehaiour of a Gaussiamprofile
whilst Carpentel(1981) useda stepfunction. Collins (1983) preferreda severetestfirst introducedby Crowley
(1968).For thisthe adwectingvelocity u varieswith x (z = ax +b with a andb constant)lt is theneasyto
shoav that if ¢(x,0) = f[In(x)]then the analytical solution to the adwection equation is
¢(x,t) = f[In(u —at)] The particular functions chosen by Collins are:

u=-07+16%

u = 09-1.6= 0 =

L

IN
&
IN

<x<L

N
N

alongwith ¢(x, 0) = In(u). It canbeshovn thatthefluid particleswill all repeatheir relative positionsaftera
time

T = Snlat )

Fig.5 shawvstheresultsof usingvariousfinite differenceschemeso adwecta Gaussiarshapedlisturbanceavith a
constantwind (alsoshovn arethe resultsof usingthe semi-Langrangianspectralandfinite-elementechniques
discussed later).df these calculations weaused

N == u, = 1.0 Ax = 1.0 At = % (maximum possible time step)

andthe integrationhascontinueduntil the disturbancecrosseghe domainonce.In Fig. 6 arethe corresponding
resultsfor the Crowley testin whichtheinitial disturbancevasnormalisedsothatit hasamaximumvalueof unity.
Examination of these results/gs a clear indication of the characteristics of each of the schemes.

No matterwhatmethodsareusedto selecta finite differenceschemetherewill inevitably be anelementof com-
promise—the perfect scheme does nigte

2.8 The two-dimensional advection equation .

Before le@ing the adection equation it is arth considering the to+dimensional grsion
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0¢,, 00, 9% _
ot +“°ax+"oay -

If this is put in finite diference form, the stability of the resultingfdience equation can bragnined by using

0" = doN" expli(kx +1y)]

For conditionally stable schemes, the stability criterion usually has the form

UoSina voSinB

S = Az
Ax Ay

<1

wherea = kAx andp = [Ay.

Letu, = RcosB andv, = Rsin@, andR = (u§+v§)1/2. We then hae

_ cosB sina | sinB sinf
S(a,B,0) = RAt‘ e + Xy ‘
If we maximiseS with respect tax, 3 and6we get

sinda = sinB =1 and tand = %3—25

Substituting for these i§ gives the stability criterion

/2
anREL + L 07%<g
DAz AzD
= Ay

If Ax = Ay = As this becomedt < s

R.J2
Theappearancef the +/2 is typicalwhengoingfrom oneto two-dimensionaproblems It meanghatthestability
criterion is more restricte than in the one-dimensional cases.

This problem can bevercome by the splitting technique discusse8iliibsection 4.5 (a)

TABLE 3. DAMPING/TIME STEP(D ) AND RELATIVE PHASEERROR (7) FOR VARIOUS SCHEMESTO SOLVE THE ONE
DIMENSIONAL LINEAR ADVECTION EQUATION WHEN 0 = 1/2x THE C.EL. STABILITY CRITERION (O = 1/2
FORABSOLUTELY STABLE SCHEMES.

(a) Damping/time ste@d )
20x  3Ax 4Ax 6Ax 10Ax
Upstream dffierencing 0.00 0.50 0.71 0.87 0.95

Crank—Nicholson 1.00 1.00 1.00 1.00 1.00
Lax—Wendrof 050 0.76 0.90 0.98 1.00
Gadd 0.13 0.79 0.95 0.99 1.00
Leapfrog 1.00 1.00 1.00 1.00 1.00
4th-order leapfrog 1.00 1.00 1.00 1.00 1.00
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TABLE 3. DAMPING/TIME STEP(D ) AND RELATIVE PHASEERROR () FOR VARIOUS SCHEMESTO SOLVE THE ONE
DIMENSIONAL LINEAR ADVECTION EQUATION WHEN a = 1/2x THE C.FL. STABILITY CRITERION(O = 1/2
FORABSOLUTELY STABLE SCHEMES.

(a) Damping/time ste@d )
20x  3Mx 4Ax 6Ax  10Ax

Spectral 1.00 1.00 1.00 1.00 1.00
Finite element 1.00 1.00 1.00 1.00 1.00
Semi-Lagrangian 0.00 0.50 0.71 0.87 0.95

(p=0, linear interpolation)

Semi-Lagrangian 0.00 0.88 0.97 1.00 1.00
(p=0, cubic spline)

TABLE 2. CONTINUED

(b) Relatve phase errofr)
20x  3Ax 4Ax 6Ax 10Ax
Upstream diferencing 1.00 100 1.00 1.00 1.00

Crank—Nicholson 0.00 041 063 081 0.93
Lax—Wendrof 0.00 058 0.75 0.88 0.95
Gadd 0.00 098 1.03 104 1.02
Leapfrog 0.00 043 0.67 0.86 0.95
4th-order leapfrog 0.00 0.65 0.89 099 1.00
Spectral 105 102 101 100 1.00
Finite element 0.00 087 099 1.01 1.00
Semi-Lagrangian 1.00 100 1.00 1.00 1.00

(p=0, linear interpolation)

Semi-Lagrangian 1.00 100 1.00 1.00 1.00
(p=0, cubic spline)

3. THE NON-LINEAR ADVECTION EQUATION

3.1 Introduction

An importantpropertyof the primitive equationgs thatthe advective termsarenon-linear In this sectionwe will
consider the simple non-linear a&ittion equation

ou du
—_— +y— =

3 Yo 0 (32)
If initially z = f(x) thenthesolutionis u = f(x —ut) . However, unlikethelinearadwection,thisis animplicit
equationfor the dependenvariableandthe solutionno longerconsistsof the initial disturbanceravelling with
speedu withoutchangeof shapeAs it is anon-linearequationjn generait doesnot have ananalyticalsolution.
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The propertiesof finite differenceforms of the non-linearadvection equationcannotbe studiedusingthe tech-
niguesintroducedearlierfor investicgatingthe stability, phasesrrorsanddampingof thelinearversionof theequa-
tion. However we can usethe integral propertiesof the non-linearadwection equationto give guidanceabout
suitable finite difierence schemes.

3.2 Preservation of conservation properties

Multiplying (32) by z and intgrating aver the domain (assumingddic boundary conditions), we get

7]

E _ N
—t—O E—Zj'udx

whereE isthetotalkineticenegy. HenceE is conseredandit would be desirablehatthefinite differenceform
of the equations presestt this property

Considetthe semi-discretéorm of theequationin which only theadwectiontermhasbeendiscretisedFor various

schemes we willxamine

oE'

po e 2
¥ where E _2§uij

and try to find schemes for whidli' is consered. The most ohious finite diference scheme is

Qu; _ _, d+17%jap
ot 0 2pax O

Multiplying by « ; and summinger all points gies

OE' 1 2 2
o = _ig(ujuj+l_u’juj—1)

Sincethetermsarenotof theform (A;,; —A ) therewill notbecancellatiorof all thetermsandsotheenegy

E' is not consemd.

An alternatve finite diference scheme can be ded by casting32) in flux form

and then using

2 2
Ou; _ Agtj+1=%jan
ot 20 2ax O

ivat U amiv1—%i-10
O 2 0 2Ax O

Analysis of this schemeveals that once ain enegy is not conserd. Havever, the scheme
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Ou; et U u; amqjen—%joan
g 3 L 2Ax U

does conservenegy. Let us multiply both sides by ;Ax and add weer all the points of our domain, we get:

0 1 ' '
(- 2 2 2 2
&E ——ZE(UJ'_',]_U/]""ujUj+l_Ujuj_l—Uj_1Uj)
J

A A

The terms joined by awes cancel from consecué grid-points and therefore the total sum is zero.

This suggests that suitableeaaging can produce eggrconserving schemes.

3.3 Aliasing

Aliasing occurswhenthenoniinearinteractionsn theadwectiontermproduceawave whichis too shortto berep-
resented on the grid; thisawe is then disely represented (aliased) asaawvith a lager wavelength.

Supposeve have adiscretemeshwith (V + 1) grid pointsandgrid lengthAx , givingadomainL = NAx . The
shortestesohablewave onthisgrid hasawavelengthof A, = 2Ax ; thereforehemaximumwavenumbetr .,
is given by

h
N|2

min

Now consider hav the nonlinear product

29

4 o

u(x)

is representednourgrid. Suppose: and¢ aresingleFouriercomponentsvith wave numbers,; andl, respec-
tively.

u(x) = Sin%%nllx% d(x) = sing%nlzx% x; = (j-1)Ax
Substitution in(32) gives

21, . 21 L
A= flzsm%llxgcos%%lzxg

2, 10 . g2mn AL U
= leEBsm f(ll+lz)x] + sm[f(ll—lz)x]gg

andso A hascontritutionsfrom wavenumberg(, +1,) and (!, —1,) . Now if themagnitude®f boththesenew
wavenumbersrelessthanl,,,, , A canbecorrectlyrepresenteddowever, if either|l, +1,| or |I, —1,| aregreater
than!,,, , the nonlinear product will be misrepresented on the grid.
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Now considemhatawave with wave number? > .. will look like onourgrid. A little trigonometricamanipu-
lation reveals that

. [PT . r2n
smg%lxjg = —sm[f(Zlmax—l)xj]

Thereforeon the grid it is not possibleto distinguishbetweenwave numbers! and I = 2l..x—! . Thismeans
thatif thenondinearinteractionleadsto awave numberl >/ .., thenl is misrepresenteds! —hencethereis
aliasing

As an example,supposewe have a wave with wavelengthA = 4Ax/ 3, which correspondg¢o wave number
I =L/N =3N/4.Sincelzl,, = N/2, this wave numberis representeéis! = N/4, giving a wave-
lengthA” = L/I' = 4Ax. This is illustrated belw.

I = 3Nx/4

Figure 7. Graphical representation of aliasing.

3.4 Nonlinear instability

As explainedabore, whentwo wave numbersl, and!, interactto give (I, +1,) whichis greatethan/,,, , the
resultingwave is misrepresentedswave numberl” = 2l o — (L1 +15) . Now if I" is oneof the original waves
(I, say), then we he

Iy = 2l — (1l +1,) giving 21, = 21, -1, (33)
To gettherangeof possiblevaluesof [, thatcansatisfy(33), weinsertthe maximumandminimumvaluesthat/,
can hae.
(i)  The maximum ®lue ofl, is [, which gvesl; = [ ,/2—thatisA; = 4Ax.
(i) The minimum walues ofl, is 0 which giesl; = [ ,—thatisA; = 2Ax .

Therefore,if one of the waves involved in the nondinear interactionhas a wavelengthlessthan 4Ax (i.e.
2Ax < A\ < 4Ax), aliasingcauseschannelingpf enegy towardsthesmallwavelengthsThecontinuoudeedback
of enepgy leadsto a catastrophicise in the kinetic enegy of wavelengths2Ax to 4Ax —this processs referred
to as noninear instability

Notethatevenif wavelengthdessthan4Ax arenotinitially presentpondinearinteractionswill eventuallypro-
duce them.
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3.5 A necessary condition for instability

Consider the sentdiscrete case

|jbj+1_¢j—1|:| (34)

Define the weighted ergy E, as

We then hae

aEW _ @j+1_¢j—1D
ot _gq)jm 20x 0

10 O
S 9001=> ;0,40
ZA’CD; Jri+ g Jri-1g

The sums of the products are zero if there geéacboundary conditions. Therefore

and soE,, is consered. This means that if initially the weighted agyeis E', then at aptime ¢ we hae

105() _
Zu—. 12 = E

J

If M = minimum(1/u ), then this gies
200 = 2
40 = F.

which shaws thatthe solutionis boundedevenif « is rough.Clearlyit is necessaryor the adwectingvelocity to
change sign in order to obtain instabiliBut note that this no longer holds when time stepping is introduced.

3.6 Control of nondinear instability

(@) Eliminatethewavesthatcausenondinearinstability by Fourieranalysingthefields,discardingthe
wavelengthdessthan 4Ax andthenreconstitutinghefield (in factit is only necessaryo discard
wavelengths less thaBAx ).
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(b)  Useasmoothingoperatomwhich reduceghe amplitudeof the shortwaveswhile having little effect
on the meteorologically importantames.

(c) Introduce anxplicit diffusion term.
(d)  Use atime intgration scheme withuilt-in diffusion (e.g. the Lax—@hdrof scheme).

(e) Introduce smoothingdirectly into the finite difference schemein order to presere integral
constraintssuchasenegy conseration. A classicexampleof this is the Arakava scheméor the
nondinear \vorticity equation.

)] Usea Galerkintechnique(spectralor finite element) For these the spacediscretizationconseres
quadratic invariants, though this property cannot be guaranteedwhen time discretizationis
introduced.

(g0 Use a semi-agrangian scheme for aglstion.

4. TOWARDS THE PRIMITIVE EQUATIONS

4.1 Introduction

A majorproblemin numericalweathermpredictionis to have aproperrepresentationf thegeostrophi@adjustment
process—this is associated with\gtg-inertia waves.

In the earlydaystheadjustmenprocessn numericalforecastsvastakencareof by usingthegeostrophi@pprox-
imationin thevorticity equationithe effect of this wasto eliminatethe gravity wavesentirely Laterthe primitive
equations were used and then the treatment of th@ygfiaertia waves becameery important.

4.2 The one-dimensional gravity-wave equations

The one-dimensional linearised gitg-wave equations (dared from the shalle-water equations) are

6u+ oh _ 6h+H6u

ot ox
Theseequationsanbe easilymanipulatednto two separatevave equationdor z and 4 , hencethey form asys-

temof hyperbolicequationsTakingthetime deriative of the u -equatiorandthe x -derivative of the i -equation
we get, upon elimination df ,

Q_LZL +gHQ_L_; =0
ot Ox
and similarly fora
If we seek solutions of the form
u = aexplik(x—ct)] h = hexplik(x —ct)] (36)

we find thatthe phasespeedf thewavesis givenby ¢ = i(gH)l/2

opposite directions along the-axis.

. Thereforetherearetwo wavestravelling in
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We now considemwaysof solvingtheseequationsusingfinite differencetechniquesilt is corvenientto divide the
schemes into tw catgories—eplicit and implicit.

4.2 (a) Explicit shemes.
When(35) is put in finite diference form using centred space and timiedifces (leapfrog scheme), werdia

n+1 n-1
u —-Uu

- __J 2Atj = —gdh’; (37)

n+l n-1

S = ~Hou (38)

whered representshe centredinite differenceoperatorcorrespondingo thefirst derivative. The stability of this
scheme is determined by substituting the feifay into (37) and(38)

u; = aN"explikx;] R’ = h\" explikx;)]

and then finding the condition for whi¢h| < 1 This procedure ges

AM42iph-1=0 p= —A/gHﬁ—isinkAx

Proceedingsin Subsectior?2.5whendealingwith the leapfrogschemeor adwection,it canbe shavn thatthere
is linear computational stability primed.

Atﬁi

(gH)1/2’

andthatthis schemds neutral.However, althoughthereis no damping therearephaseerrorsandcomputational
dispersion; also there is a computational mode since it is a three-tieshedbeme.

When forvard time diferences are used with centred spademihces, we find that
2 _ A, 2
|)\| =1+ ngl_xD (sinkAx)

therefore this scheme is absolutely unstable.

4.2 (b) Implicit shemes.

Considemwhathappensvhenthe spacederivativesarereplacedby centredspacedifferencesaveragedover time
levelsn —1 andn + 1; centred diferences will be used for the time detives.

u"ttogynt D§h?+1+6h§_lm

J J
2 O

27t (39)
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n+1l n-1 n+l n-1
hy —hi e O g (40)
20t U 2 0

whered representacentredinite differenceoperatorcorrespondindo thefirst derivative. Applying & to (39)we
find 6u’}+ 1, which is then substituted in{d0) to give

gH(8t)’ R —h "t = F(h" Y u" (41)
Therefore,sincethe RHS is known, (41) is an elliptic equationwhich canbe solved for h;‘ 1 , given suitable

boundary conditionsa; *1 can be found in a similaahion.

It canbeshawvn thatthis schemas absolutelystableandsoary time stepcanbeused However, aHelmholtzequa-
tion has to be sobd every time step and this can be computationatlyemsve.

An implicit schemeusing forward time differencescan be constructedusing the Crank—Nicolsonapproachin
which

n+1l n-1
u - —

u; n n+1l

‘J—“Z“At—J“ = —8(B,dh; + B, +10h; ) (42)

hr%+1_hn_—1
J

— n n+l

J
wheref3,, andf,, ., areweightssuchthatp, +B,.; = 1 (B, = 1B, +; = 0 correspondso theforwardtime-
centred space scheme, which is absolutely unstable).

A stability analysis of (42) and (43) shis that there is instability i8,, > 1/2and absolute stability {8, < 1/2

4.3 Staggered grids

We nav consider the bestay of distriluting the ariablesz and4 on the grid.

Initially we might expect thatu and/ should be held at each grid point.

X X X X X
u,h u,h u,h u,h u,h

However careful examinationshaws that, if centreddifferencesare used,we have two separatesubgrids.This
means that the solutions on the subgrids can become decoupled from one another

Displacingthegrid pointswhichcarrythe 2 variableto themiddlebetweerthe . pointswegetrid of thisproblem
as nav the centred space deative uses successi points of the sameaxiable.

X o0 X o0 X o0 X o Xx o
h uwu h u h u h u h

This alsohastheeffectof improving thedispersiorcharacteristicef any scheméecauséhe effective grid length
if halved. These ideas can bdended to the tavdimensional problem
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ou , ,0h _ v, ,O0h _ Oh , pu v _
w8 00 wtEey T HtHyta07 0

There are arious grids that can be used \tlaee knevn as Arakava A—E grids and are sivo belav:

As well asspacestaggeringt is often desirableto have time staggeringThis is particularlyusefulfor leapfrog
schemesvherethe mostcommondistribution of variablesis known asthe Eliassengrid. However grid E is the
same as grid B tilted by 45°.

Thereis not a generakconsensuasto which grid hasthe bestpropertiesalthoughgrids A andD areknown to be
worst. Grid C vas used in the grid-point model of ECMWF

A B
(not staggered)

b X X x
u,v,h u,v,h h h

X

u,v
x X b X
u,v,h uv,h h h

C D

=
(=1
(=2
=2
<
=

=
=
=2
=
<
=

E
X x X
u,v h u,v
b 4 X X
h u,v h
x b4 X
u,v h u,v

Figure 8. The arrangement anables on the Arakea A—E grids.

4.4 The shallow-water equations.

To make ourequationsnorerealisticwe shouldincludetheadwection.Therefore stickingto thelinearone-dimen-
sion case we get
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ou ou oh _
ot TUopx T8 = O

(44)
oh, Oh pdu_,

ot “‘% ox

Substituting(36) into (44) gives the dispersion relationship

¢ = upt(gH)"?

When the leapfrog scheme is used with centred spdeeetifing, the stability criterion becomes

Ax

ug+ (gH)"?

At <
If H = 10 km, thephasespeedf thegravity wavesis 313m/s;now if Ax = 10°m andu, = 100m/s thesta-
bility criterion becomed\ < 4.0 min. Note that this criterion is mainly determined by thesilyavave speed.

Thestability analysisof the shallov-waterequationswill be performedn two dimensionsisingthespectraimeth-
od. The pointwe wantto stresshereis thatthe adjustmentermslimit the uppersizeof thetime stepto, typically,
one third of the one possible for the stable treatment of trectdn terns.

4.5 Increasing the size of the time step

We saw in theformer sectionthatin an explicity treatmenibf the shallov waterequationgepresentingynoptic
scalefeaturesonly (Ax = 100 km) the time stepfor stability is restrictedto a valuemuchlower thanthe typical
time scaleof suchfeaturesthereforeincreasingthe amountof calculationsto be performedmuch abose what
would be desirable.

Severalwaysof increasinghe allowedtime stephave beendevisedbut only the mostsuccessfubneswill bere-
vised here.

4.5 (a) The splitting method.

For the setof equationgdiscussedn Subsectiort.4, thereareclearlytwo differentphysical mechanismscting.
Therefore,it may be desirableto treatthe adwectionand gravity partsseparatelyMarchukdevisedthe splitting
technigue which mads this possible.

The equations are split as folls:

ou, ou_o b, dh_
3t

Uogy. = 5 T Yoy, T 0 advectior (45)

du _ 0h _ 0h , 0u _ i
S tes. =0 5 tH5, =0 adjustmen (46)

The following procedure is then used.

(a) Usestandardinite differencetechniquego solve (45). If k" andu’ denotenew valuesafter one
time step we hae

44 Meteorological Training CourseLecture Series
0 ECMWEF, 2002



Numerical methods

3

*

h = A

n * o n
advh u = )‘advu

(b)  The nev values are ne used as the starting point for solvif@®)

*

n+l _
ad]-h u = )\adju

*

BT = A
Substituting forh” andu’ gives

"= AR and «"T'=Au" where A = A A

adjtadv

The completeschemes stableprovided [A| < 1. andthiswill besatisfiedf |A,q| <1 and,thereforethereis sta-
bility if each of the separate steps is stable.

It is possibleto exploit the factthatthe sametime stepdoesnot have to be usedfor eachstep.For example,the
gravity wave speeds largerthanthe adwectionspeedandsoit appeargeasonablé¢o usea largetime stepfor ad-
vection (At say) and a numberof smallertime stepsfor the gravity wave equations(M stepsof &¢, with
At = Mdt). The two steps will be stable primed

At ot _ At
UOECS:L c-A-g—C—cMatsl

Typically ¢ is aboutthreetimeslargerthanz, andsoit is appropriatéo useM = 3 andto takethreeadjustment
steps to each adetion step. This approach has been usedtefly by the UK Met. Oice—seeGadd(1978).
4.5 (b) Brward-ba&kward sheme

Let usconsidetheadjustmentermsof the one-dimensionaghallav-waterequationsasgivenby (35). Theproce-
dureis to solve the secondequationby meansof a FTSCstepandthento usethe calculatedvaluesof the height
for calculating ne values ofu using the first equation.

This can be stated as foNe:

h;”l — ;_%’g(u’jﬁl—uﬁ_l) forward
n+l _ n gAt n+1 n+1l
u; "= uj_EA_x j+1_hj—l) backwarc

If we use the n Neumann method for analysing the stability of this scheme we find that

20Ax
At < 1/2

" (gH)

whichis twice thetime stepallowedby theleapfrogmethod Furthermorethe schemas neutraland,althoughthe
seconckquationiookssimilarto animplicit schemethesetof equationss decoupledasin anexplicit methodand
we don't hae to sole a coupled system of simultaneous equations. .

4.5 (c) Pessue avenging.

A proceduresomeavhat similar to the forward—backwrd schemads the pressureaveragingtechnique The name
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comesfrom the primitive equationsusingz astheverticalco-ordinatewheretheadjustmenternfor themomen-
tumequationss givenby theso-calledpressurgradienterm.As we aredealingherewith theshallov-waterequa-
tions, it would be more adequate to call it height or geopotenterbging.

Theideais to take asthe heightin thewind equationrsomeaverageof the previous, presentaindfuturetime values
and using centred time dedtives.

Therefore the momentum equation reads

n+l n-1

/ uj n n ntl_gn+ n—
J J = 2§x{(1_28)(h1*1_hf—1)+€[(hf+1l 11)+(hj+1 4_11)]}

whichreducedo theleapfrogschemef € = 0. If wetake ¢ = 1/4 weget,fromthevon Neumanrstability anal-
ysis, the condition

20Ax

At s ————,
(gH)l/Z

which is the same as we got for the fardrbackvard scheme.

4.5 (d) Semi-implicit $&me

It wasstatedn sectionSubsectior.2 (b) thatanimplicit treatmenbdf thegravity wave equatioris absolutelystable
for ary sizeof thetime step thereforewe couldtry suchatreatmenfor theadjustmentermsin theshallov water
equations while &eping aneplicity formulation of the adection terms.

The disretized equations indvdimensions then read

W= Ay (D g“m NOAREY s
n+l _ n gAt n+1 n-1
ol = T Ay (T SR (47)

A T mh”—H—ZAtﬁ oo} ey

where

and [, and[J, arethe centredapproximationgo the x andy derivatives,respectrely. Upon substitutionof

n+l

u; ~ and vj-+ ! from the first tvo equations into the third equation we get

02+ 4(As) n+l:Fn,n—l
T gH(A)?

whereAs = Ax = Ay . Thisis aHelmholtzequationwhich hasto be solved at every time stepand,thereforejt
is moreexpensve thanthe explicit method.NeverthelesstherearefastHelmholtzsolverswhich aredescribedn
chapter8 anda stability analysiswhich we will performin Section6 usingthe spectralapproactshows thatthe
time stepsizeis nolongerlimited by the phasespeedf the (fast)gravity waves,but by the speedf themoreslow
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Rossby modes.

Computettestsshav thattheincreasedizeof thetime stepovercomeghe higheramountof work neededatevery
time step,andsothe semi-implicittime schemes fasterthanthe explicit oneTheadwantagds mostnotableif we
usethe spectraltechniquewith sphericalharmonicsastheseare eigenfunctionof the Laplacianoperatorand,
thereforetheset(47) becomes decoupledsetof equationspnefor every spectrakomponenbdf the heightfunc-
tion.

4.6 Diffusion

The only termsnot treatedsofar from the shallov-waterequationsn its linearizedform arethe diffusionterms.
The linear difusion equation for a functioA in one dimension can be written as:

2
04 _ g4, ko (48)
ot axz

This is a parabolicequationwhoseanalyticalsolution,whenwe useperiodic boundaryconditionsanda single

wave of wave numberk as the initial condition can be st to be

A(x, t) = Agsin(kx)exp[—k°Kt]

which represents the initial disturbance with an amplitude decaying with time.

We will considemereonly threetime-steppingschemesombinedwith centredsecond-ordespacedifferencing
in orderto shawv that,asit wasthe casewith theotherterms,anexplicit treatments in generakonditionallystable
while an implicit treatment is normally stable.

4.6 (a) Explicit forwatd sheme

n+l n n n n
AT AT AL 2474 AT
At (Ax)2

(49)

As usual, we consider the befwur of a single harmonic and assume
n _ yn .
A = N Cexplikx|]
Substituting this int@¢49) gives

R
2

)\=1—40%in g with o =

For stability we require |\| < 1 andthis is satisfiedfor all wavelengthsprovided o < 1/ 2. However, thoughsta-
bility is ensuredby usingthis condition,a valueof ¢ in therangel/4< o< 1/2 givesa negative valueof A,
which causeghe amplitudeof the wave to switch sign betweensuccessie time steps.This may be avoided by
choosingo<1/4.

In numericalmodels,atypical valueof the eddydiffusivity is K = 10° m?/s. With Ax = 100km the stability
conditiono < 1/4 is satisfiedf At <2 x 10° s. Thisis sufficiently largefor it notto produceary problemsHow-
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ever, this is not the case in thenical where a typical grid spacing bkm leads toAt <2 s.

4.6 (b) Classical implicit $&=me

In this scheme, the space dative is ealuated at time il n + 1. The scheme then reads:

n+1l n n+l n+l n+l
ATT-AY AT 2AT T AT

At (Ax)z

and the usual stability analysisvgs

1

1+402%in1%6g

which has|A| <1 for all values ofk ando . Therefore, the scheme is absolutely stable.

4.6 (c) Cank—Nidolson sheme

This is a meanbetweerthe two former schemesandthe spacederivative is evaluatedat time level n + 1/2 by
averaging oer time levelsn andn + 1.

Like the classicalimplicit methodthe Crank—Nicholsorschemds absolutelystable. However, the advantageof
thisschemas thatit is second-ordeaccuratén time asopposedo first-orderaccurag in time of boththeexplicit
and the classical implicit methods.

It is interestingto generalizahis approactby weightingthe presentaindfuture valuesof theright handsidewith
weights 3, and (3, ., subjectto the condition B, + 3, ., = 1. Someexperimentssuggestthat values of
B, = 1/4, B, .1 = 3/4 give an accurate scheme with which long time steps can be used.

When the eddy difisivity and the grid spacingavy, the continuous difision equation is

9A _ 8 [,9AQ

ot~ oax oxO

and the generalized time stepping just described can be written

An-+1_Ar4L 1 0K
J J — = J+1/2 noo AN r%+1_ n_+l
BT By, Pl AD B AT - AT ]

K, O
—j=(1/2) A" A" +B ., Arf+1_A;?+l 0
ij—(l/Z)[Bn( J J—l) Bn l( J J—l)] 0

Whereij = xj+1/2_xj_l/2, ij+1/2 = xj+1_xj andij_l/z = xj_xj_l.
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5. THE SEMI-LAGRANGIAN TECHNIQ UE

5.1 Introduction

Sofarwe have taken an Eulerianview andconsideredvhatwasthe evolution in time of a dependenvariableat
fixed pointsin spaceandin the spectralandfinite elementsve will considenwhatis the time evolution of some
coeficientsmultiplying somebasisfunctionsalsofixedin spacejn otherwords,we usedthepartialtime derivative
0/ 0t .

A few yearsago,several attemptsveremadeto build stabletime integrationschemegermittinglargetime steps.
Robert(1981)proposedisingthe quasi-Lagrangiatechniquefor thetreatmenof the adwective partof the equa-
tions.

Let us consider the one-dimensional ection equation
09 4,90 =
+u x%p 0 (50)
where¢ is the adected property and is the adection \elocity. This equation can be recast in the form
o _ (51)

wherethe left-handside standsfor the Lagrangianderivative andits meaningis the time evolution of a material
volumeandequation(51) couldbereadas:theproperty¢ is conseredwithin anair parcel.Thediscretizatiorcan
be written as

t+At t
¢A _¢D =0
At
wheresubindeesA andD indicatethe arrival (at time instantz + A¢ ) anddeparturgat time instantt) pointsof
the considered air parcel.

If we know theinitial distribution of ¢ (defined,for example,on aregular arrayof points)thenby trackingthe
fluid parcelswe endup with informationaboutthe distribution of ¢ at somelatertime, but in generalthe points
wherewe know thevalueof ¢ will notbeuniformly distributedary moreandthis makesthe procedurevery dif-
ficult to apply

The semi-Lagrangiatechnigueovercomesghis difficulty by consideringhe endpointsasconsistingof a regular
meshandtrackingbackthe origin of eachparcel.Thesimplestmethodfor findingthevalueof ¢ atgridpoint; at

timeleveln + 1 (¢; w1 say) consistsn trackingbacktheair parceloveronetime stepto find whereit wasattime

level n . Having locatedit origin we now findits ¢ valueby interpolationfrom thevaluesattheneighbouringyrid
points at time leel n .

If the interpolated alue is¢+ we hae
7"t = of (52)

5.2 Stability in one-dimension

Let us consider the linear asbtion equation
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Thedistancetravelledduringthelastinterval Az by anair parcelarriving atpoint x ; is CAz, thereforeit comes
from a point

x. = x;-CAt (54)

If this pointlies betweergrid points(j — p) and(j —p — 1), andwecall a thefractionof grid lengthfrom point
x. to pointx;_, we hae

CAt = (p+a)Ax (55)
and using linear interpolation to figd’ we get

07" = of = (- )dp, + a0, (56)

(Notethatwhenp = 0, a = CAt/Ax and(56)becomesdenticaltotheupstreandifferencingscheme)we
study the stability using theom Neumann method and, therefore, assume a solution of the form

cl)j" = ¢O)\"exp[ikxj] (57)
substituting we get
A ={1l-a(l-exp[-ikAx])}exp[—ipkAx] (58)
and
D=|\ = [1-2a(1-a){1-cos(kAx)}]Y?. (59)

Therefore|]A| <1 aslong asi(1—a) =0, that is

O<sac<l (60)

the schemds, therefore stableif theinterpolationpointsarethetwo nearesbnesto the departurgoint, but it is
neutral only ifa = 0 ora = 1,thatis to say when no interpolation is needed.\wWM come to this point later

We find that heary dampingoccursfor the shortestwavelengths(thereis completeextinction when/ = 2 and
a = 0.5). butthedampingdecreaseas! increasesA strangdeatureof this schemdpeculiarto thecaseof con-
stantwind) is thatfor agiven a the phaseerrorsanddissipationdecreasasp increasesThis happendecause
the departure point can be located precisely using only the wind at tlz point.

A similar analysigto theabove canbe carriedout for quadratidnterpolation.Onceagain the schemas absolutely
stableprovided ¢+ is computecby interpolationfrom the nearesthreegrid points. This scheméhaslessdamping
thanthelinearinterpolation put the phaseepresentatiois notimproved.It is easyto shav thatwhenthedeparture
pointis within half agrid lengthfrom thegrid point(i.e. p = 0), thisscheméecomesdenticalto the Lax—\Wen-

droff scheme.

Thesadeascanbeextendedo two-dimensionaflow. It hasbeenfoundthatbi-quadratianterpolationis absolutely
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stablefor constantflow (providedthe nine grid pointsnearesthe departurgpoint are usedfor interpolation)and
that the characteristics of this scheme are superior to those of a bilinear interpolation scheme.

5.3 Cubic spline interpolation

An accuratewvay of finding the valueof ¢ atthe departurepointis to usecubic splineinterpolation.The spline
S(x) is defined to be a cubic polynomial withinyagrid intenal, where the coé€ients are chosen so that

® S(x;) = ¢, at each gridpoint
(i)  the gradient ofS(x) is continuous
(iii) {(dZS/de)dx is minimised

It can then be shien that, in the inte x;_; <x <x;, the spline is

D. D.
S(x) = =L aj—0)(a—x;_y) - —L(x—x;_1)°(x,~x)
Ax Ax
(61)
¢j_1

+
3
Ax

(2 —2){2(x —x;_y) +Ax} + f—gu —x;_1)"{2(x;—x) + Ax}
X

where¢;_, and¢; arethegrid-pointvaluesof ¢ at j—1 andj,andD;_, andD ;arethecorrespondingra-
dients of the splines desd from

D, ,+4D;+D,; _ biv1—9,1
6 20\x

(62)

The implementation of this scheme requires steps:

(@) Thederwvativesof the splinesat eachgrid point j andattime level n (D’} say)arederived from
the set of simultaneous equations define@62y.

n n n n n
D; +4D;+D;,q _ ¢;.1—0; 4

6 20Ax

(b)  Having foundthe point x. from which anair parceloriginatesthe valueof ¢% is calculatedrom
(61) usingthevaluesof ¢ andD atthetwo neighbouringgrid points.If point x. liesbetweergrid
pointsm = j—p andm —1 atadistancedAx from point m , then(61) givesanexpressiorfor
¢% interms of¢), ,, ¢, D, _,, D, andd . The time stepping algorith(s2) then becomes

m-11

0" = o8 —ADLAx + & { (Dl _y + 2D)Ax + 3(00 _y — 0k} )
—G{(D},_y+ D) Dx +2(0 _ — 1)}

A correspondingxpression can oliously be dewed for the case whem, <0.

Althoughcubicsplineinterpolatiorrequiresmuchmorecomputatiorthanalinearinterpolation(comparg56) with
(63)), thecharacteristicsf thecubicsplineschemearefar superior Thereforejn choosingaschemat is necessary
to balance accurg@aninst computationab@ense.

Letusnow turntothenon-linearadvectionequationin this caseheadwectingvelocity, andhencehedisplacement

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 51



9 Numerical methods
A\~ 4

of every air parcel,is a function of x. We can still usethe samemethodand estimatethe displacemenby

d; = u;At and, thereforep anda will depend upory .

A moreaccurateestimateof the displacemenis found by usingan adwectingvelocity from midway betweerthe
departureandarrival points;this could be estimatedn mary ways.This is the equivalentto the Crank—Nicholson
schemaf we estimatehe adwectingvelocity attime ¢ + At/ 2, or to the centrediime-differencingscheme# we
use the estimate at timteand the departure point at time- At .

5.4 Cubic Lagrang interpolation and shape preservation

Cubicsplineinterpolationis quite expensve andcanbeunusablen morethanonedomensionA simpleralthough
not so accurate interpolation is pited by the cubic Lagrange polynomials defined asv@lio

Q(x) is a cubic polynomial a@ring 4 consecuté gridpoints
Q(x)=¢; at each of these four grid-points.

Then Q(x) can bexpressed as

4
Q) = 3 Ci)d,
i=1

where the functions(x) can be computed as

4

|_| (x —xy)

Ciw) = £
|_| (x; —x)
k#i

Cubic Hermiteinterpolationis someavhat similar but the input dataarethe valuesandthe dervativesat the two
gridpoints surrounding the interpolation point.

Any high orderinterpolationcanproduceartificial maximaandminimanot presentn theoriginal data.Suposeave
wantto interpolateto point D, by meanf a cubicpolynomial,thefunctiongivenatthe4 consecutie grid-points
(-1), ], (+1) and (j+2)

interpolated alue

i1 i D j+l j+2

As pureadwectioncannot producenen maximain the adwectedfunction,it is corvenientto avoid possibleover-
shootingin the cubicinterpolationslf theinterpolationwasdoneby Hermitepolynomials,appropriatenodifica-
tion of the derivativesat pointsj andj+1 canleadto the eliminationof maximain theinterpolationintenal. In the
caseof cubicLagrangepolynomials thetechniquecalledquasi-monotonaterpolationcanbeapplied:afterinter-
polation, the interpolatechiue is restricted to stay within the inteb$ ; — ¢, ;
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5.5 Various quasi-Lagrangian schemes in 2D

Wewill considethereonly schemesisingcentredime differencesThegeneraform of the evolution equatiorfor
a gven parameteX (x, y, t) can be written

90X | ,,0X  ,0X _
S tUGe VG, = LK ANX) (64)

whereL [X is the linear part of the equation alW{ X') the non-linear part.

The left-hand side is the Lagrangian total htive

dX _0X , X , ,OX
dt ot +U6x+V6y

5.5 (a) Method with interpolatiorRpbert1982).

The evolution equation is discretized as falls:

Xt+At_Xt—At Xt+At t—At
G A7 [©) = LI G 5 O +{N(Xt)}|

X isthevalueof X atgrid point G, X is thevalueof X atthepoint O wherethe particlecomesfrom, X
is thevalueof X atthemid-pointbetweenO andG. Superscripts , ¢ — At and¢ + At referto time levels. This
method needs the interpolation Xf ~** at pointO and X’ at pointG.

5.5 (b) Method avoiding one interpolatioRi(chie 1986).

We define poinO' as the closest grid point @ andl’ as the mid-point betwee@' andG. We can write

U=U+U V=V +V
* * _—>
where2U At and2V At are the components oéetorO'G.

Themethodconsistan asemi-Lagrangiatreatmenbf theadwectionby thewind (U*, V*) , theadwectionby the
residuawind (U’, V') beingincorporatednto thenon-lineatmpartof theright-handside. Thisdiscretizationreads:

t+ At t—At t + At t—At
XL X

, + X
¢ - poe 20 4 nxhye-PrE v I

0x ay4

27t

This methodavoidstheinterpolationat point O, andtheresidualinterpolationat the point I’ is very simpledue
to thethreepossiblelocationsshavn in Fig. 9 . Thedamping,on the otherhand,is reduceddueto the lack of in-
terpolation at the departure point.
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e Z c
I;/ Ia The three possible
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Figure 9. Location of the points where the interpolation is performed for quasi-Lagrangian techniques.

5.5 (c) Method without any interpolation interpolation .
Onesupplementargimplificationcanbeachiezedby evaluatingthenon-lineatermsby takingtheaverageattime
t between theiralues at grid point& andO'.

¢ ,0X 00X 1 ¢ ¢
(N - Ge+VETE = 5 (VX)) _+ (N (X))o

0X | 0XH 350X | ., 0X(f
+_g[ dx tv ayL} %] dx tv GyDo]

5.5 (d) Method used at ECMWF

0
s X X X X =Xg
X X XX _x~ T x X o X
X X O/X X X X X
= = =
X X X X X
e

Figure 10: 12-point interpolation used in the horizontal at ECMWF

At ECMWFthe methodof Robertis usedwith cubicLagrangegpolynomialsandquasi-monotonémiter. In order
to reducethe costof theinterpolation theinterpolationin longitudeat the rows notimmediateadjacento the de-
parturepoint O is donelinearly (singly underlinedoointsin Figure10). The procedurés asfollows andis valid for
areducedGaussiamyrid to bedescribedater Thelongitudeandlatitudeof thedeparturgooint O is found (se€lat-
er). At eachof thetwo rows of grid-pointssecondhearesnheighbourgo the departureoint, linearinterpolations
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areperformedo thelongitudeof thedeparturgoint. At thenearesheighboringgrid pointrows, cubicquasi-mon-
otoneinterpolationsaareperformedo the sameongitude.Finally a quasi-monotoneubicinterpolationin latitude
is performedusingthe 4 interpolatedvalues.In theverticala similar proceduras followed: at eachnearesheigh-
boring level to the departurepoint a 12-pointinterpolationis performedandat the secondnearesneighbouring
levelsabilinearinterpolationis done.Finally aguasi-monotonéor standarddependingf thevariableto beinter-
polated)cubicinterpolationis donein the vertical direction.A total of 32 pointsareusedthenfor eachthree-di-
mensional interpolation.

5.6 Stability on the shallow water equations

We canperformthe stability analyseof the threemethodsasappliedto the shallov waterequationsjn aform
exactly similarto thewaywe did it in the Euleriancase We arenotgoingto follow the procedureagain but instead
we present the results on stability and dispersion characteristics of the three schemes.

(a)  For the Robert scheme the stability criterion is
Fne? <1
aslong astheinterpolationis doneby usingthe grid point valuesaroundthe origin point, andthe

adjustment terms are treated implicitly

(b)  The Ritchie scheme leads to a stability criterion for theeetilee part of
(MU' + NV")At<1

whichis analogouso the onewe obtainedwith the semiimplicit schemeeplacingU 5 andV 5 by
theresidualvelocity (U’, V') . This relationshipcanbe shavn to be alwaystrue,dueto theway in

which the residualelocity was defined.

(c)  Thestability criterion of thefully non-interpolatingschemds completelyanalogougo the former
one.

. . anumerical- . . . . At . L
Thedispersionr = ———='is givenin Fig. 11 asafunctionof ZUOA_x for theanalyticalslow solutionin theone

. . a i
dimensional case. 2"vtcal
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Figure 11. Bect of time intgration on the slo wave for \arious \alues of the avelength.

5.7 Computation of the trajectory

The computatiorof the departurgoint for a parcelof air arriving ata grid-pointG attime ¢ + At canbedoneby
solving the 'ector semi-Lagrangian equation defining tleéuity of the parcel

56
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The cedntered discretization of this equation in a three-tiued-4eheme is

t+ At t—At
—-r t

27t

r _ v

A At

wherer’ " isthearrival positionvectorof point G (thegrid-pointwheretheparcelarrivesattime ¢ + At ), -
is the positionvectorof the departurgoint O (wherethe parcelwasattime ¢ — At ) and Vs thevelocity vector
atthepresentime ¢ atthemiddleof thetrajectory In planegeometrythetrajectoryis asumedo beastraightline
(velocity constanduringtheinterval ¢ — At — ¢ + At ). Now, the positionof the middle of thetrajectorydepends
onthe positionof thedeparturgoint, whichis whatwe try to determinewith this equationthereforeheequation
is an implicit equation and has to be sol\by an iteratie method, depicted iRig. 12

X X X
O,
e
X X X X X
~
of
X X X X X

Figure 12: Iteratie trajectory computation

In thefirstiteration,we take thevelocity V, atthearrival pointG. Usingthis velocity we go backwardsadistance

2V, At toreachpointO,, thisis thefirst guesf ourdeparturgoint. Thenwe take thepointM, midway between
pointsG and O, andinterpolatethe velocity at the presentime to that point. Usingthatvelocity V, we go back
from G adistance2V At to point O, andrepeatheprocedureauntil it corverges. At ECMWF only threeiterations
are done and no test of s@mence is performed.

In sphericalgeometrythetrajectoryis asumedo be anarcof a greatcircle insteadof a straightline, which com-
plicatessomeavhatthe computationdut theidearemainghesame Also in sphericaljeometryonehasto take into
accounthattheinterpolatedvind componentseferto alocal frameof referencepointingto thelocal North and
East and, in order to use the interpolataldies at grid point G, tlgehave to be “rotated”.

In orderto have anideaaboutthe corvergenceof theiterative procedurgustdescribedlet usapplythis procedure
tothecomputatiorof thesemi-Lagrangiatrajectoryin onedimensionFor theshale of simplicity wewill consider
atwo-time-level schemendusethevelocitiesonly atthedeparturgointinsteadof interpolatingthemat the mid-
dle of the trajectoryAt the nth iteration the departure poinj , ; is computed as

r,e1 = G-AtV,
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Now assume that Varies linearly between grid-points

Vza+brob=
or

then
r,o1 = G—alt—-br, At

For the iteratie procedure to cerme, this equation must¥&a solution of the form

r,=AN"+K; (]Al<1)

n

Substituting we get

_G—-alt
K= 1+bAt
A=—bAt

therefore for covergence we must ke

1
At < ==
L

This conditionmeanghattheparcelsdo not overtale eachotheduringtheinterval A¢ andis muchlessrestrictive
than the CFL stability limit. Also it does not depend on the mesh size.

5.8 Two-time-level schemes

A centered discretization (second order accurate in space and time) of the general semi-Lagrangian equation

dX
— =R
dt
using only tvo time levels is
XXy o
At M

whereR has to bexrapolated in time before being interpolated to the middle point of the trajectory

At
+ =
t 1 t-nt

2 3¢
R =-R -ZR
2 2
An alternatve second-ordeaccurateschemeanbedevelopedrom aTaylor seriesexpansiorin thesemi-Lagrang-

ian sense arround the departure point of the trajectory
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t+At

¢ 2,2 0
X4 = xt 4 pg XD (B0 X

elh - 2 2o,

Notice thatthetime level andthe positionin thetrajectoryareconsistentasrequestedn the Lagrangiarpoint of
view. Here subinde AV means somevarage alue along the trajectary

In the caseof the computatiorof thetrajectory X is thepositionvectorof the parcelof air andthis equations the
equationof a uniformly acceleratednovementwith initial velocity (dX/dt); and acceleratior(d2X/dt2)AV.

Thetrajectorycannotary morebe consideredsa straightline in this caseandthe middle point of thetrajectory
is not half vay between the aual and the departure points.

Now, substituting(dX/dt)}, by R% and(d°X /dt’)av by (dR/d¢) ., We get

2
t+OE _ ot t (AN RO
X,y o = Xp+AtRp + > [dt Oy (65)

and(dR/dt) 4 needs to bevaluated. This is done at ECMWF as

R - qu - Ri)_m

CH: Uayv At

which is not strictly compatiblewith the Lagrangianpoint of view becauset usesvaluesattimet atthearrival
pointof thetrajectoryandvaluesattime ¢ — At atthedeparturgointof thepresentrajectorywhichrunsbetween
timest andt + At . It is therefore only an approximation.

With this choiceEqg. (65)becomes

t+At

X = X5+ SR+ (2R R ™))
and the computation of the trajectory

t+AE _ rf,—)+é2§(Vf4+{2Vt—Vt_At}D)

_‘
>
|

6. THE SPECTRAL METHOD

6.1 Introduction

Whenusingfinite differencetechniquedor evolutionaryproblemswe only considergrid-pointvaluesof the de-
pendentvariables;no assumptioris madeabouthow thevariablesbhehae betweergrid points.An alternatve ap-
proachis to expandthedependentariablesn termsof afinite seriesof smoothorthogonafunctions.Theproblem
is thenreducedo solvinga setof ordinarydifferentialequationsvhich determinghe behaiour in time of the ex-
pansion codfcients.

As an eample consider the linear one-dimensionaletionary problem
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2 _
= H) (66)

where H is a linear differential operator Expanding ¢ in terns of a set of orthogonal functions
e,(x), m = my,..m, we hae

= 3 Oput)en(x) 67)

The ¢,, aretheexpansiorcoeficientswhosebehaiour we wantto determine\We now usetheprocedureutlined
earlierin Subsectiorl.4—thatis we minimisetheintegral of thesquareof theresidualcausedy usingtheapprox-
imatesolution(67)in theoriginalequation(66) (alternatvely we couldusethe Galerkinmethodwith theexpansion
functions as test functions). Since tix@ansion functions are orthonormal werda

L

* 1 l =
J’elemdx - A ™
0

Ep L #m

wheree:n is the comple conjugate ofe,, . Using this condition we get

d¢ Zq)lj'e "H(e)dx  forallm (68)

Thatis, we have a setof ordinarydifferentialequationgor the rate of changewith time of the expansioncoefi-
cients.

It is now interesting to consider tioour choice of gpansion functions can greatly simplify the problem

(@) If the expansionfunctionsare eigenfunctionof H we have H(e;) = Ase;, wherethe A, arethe
eigervalues;(68) then becomes

and the equations @ become decoupled.

(b) If the original equation is

wherelL is alinearoperatoythenour problemis simplified by usingexpansionfunctionsthatare
eigenfunctions of. with eigewaluesh,, ; we then hee

d¢
A, T Zd)lj'e nH(e,)dx
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6.2 The one-dimensional linear advection equation

It is corvenientto write the advectionequationin termsof the longitudeA = 2mx/L andthe angularvelocity
Y = 2muy/L.

0w, 0w _ _2n
§+yﬁ—0 oo—Lx (69)

with boundaryconditions: w(A, ) = w(A + 21p, ¢) for integerp , andinitial conditions:w(A, 0) = f(A) . For
ary reasonable functiofi(A) the analytical solution t(69)is w(A,¢) = f(A —vi)
If we aregoingto usethe approacloutlinedin Subsectiorb.1, we mustchoosesuitableexpansionfunctions.The

obvious choice is the finitedarier series

M
w(A )= Z w,,(t)exp[imA] (70)
m=-M

becaus¢heexpansiorfunctionsaretheneigenfunctionsf thedifferentialspaceoperatorHere M isthemaximum
wave numberandthe w,, arethecomple expansioncoeficients.Sincew_,,(t) = w,,(¢) we needonly becon-
cerned withw,, for 0<sm <M , rather than the full set okpansion codicients.

We shouldnow usethe Galerkinmethod but for this simpleproblemit is sufiicient to substitute(70) in (69) and
equate coditients of the gpansion functions. This yields (as does the formal Galerkin method)

d
%Hmywmzo Osms<M (71)

giving 2M + 1 equations for they,, 's. For this particular cas@’1) can be intgrated gactly to give
w,,(#) = w,(0)explimyt] (72)

If £(A) is also represented by a truncatedrer series the complete solution is
w(A,£) = Zamexp[im()\ -vyt)] where f(A) = Zamexp[im)\]

whichis the sameasthe exactsolution. Thereis no dispersiondueto the spacediscretizationunlike in thefinite
differencesnethod.Thisfactis dueto the spacederivativesbeingcomputedanalyticallywhile they wereapprox-
imated in the finite di€rence method.

Theexpression(72) canberepresentedraphicallyasavectorin thecomple planerotatinganticlockwisewith a
constant angularelocity my/2Tt.

Scalarlymultiplying Eq. (70) by eachof the basisfunctionsand usingthe orthogonalitypropertyof the Fourier
basis we get at the initial time

2mn

®,,(0) = AmJ'w()\, 0)exp[—imA]dA (73)
0

where A, are the normalizatiorattors (which is knon as the direct@urier transform).
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At ary futuretime we canapply Eq. (70) to getthe spacedistribution of the solution. This is normally known as
inverse Burier transform.

In the practicethe initial conditionscanbe givenin the form of grid-pointdata(N + 1 pointswith spacingAx
say).Thereforewethink of thetruncated-ourierseriesasrepresentingninterpolatingfunctionwhich exactly fits
the alues ofw at theN + 1 grid points.Eq. (73)then has to be computed as a discrete sum

K
©,(0) = A%, T w(\)expl-imA,] (74)
i=1

which is knavn as discrete directoarier transform. The corresponding discreteeige Burier transform is

M
W(A,0) = T w,(0)explimA,] (75)
m=-M

Both of themcanbecomputedvith the FastFourier Transform(FFT) algorithm.It canbeshavn that,startingfrom
thesetof w,,(0) , goingto thesetw(A,, 0); i=1, .....,Kandreturningto w,,(0) werecorerexactlytheoriginal
values(thetransformsareexact)aslongas K = 2M + 1 andthepointsareequallyspacedn A . Thisdistribution
of pointswith K = 2M + 1 is known asthelineargrid. On the otherhandit canbe shavn alsothatthe product
of two functionscanbe computedwithout aliassingby the transformmethodof transformingboth functionsto
grid-pointspacemultiplying togethethefunctionsateachgrid-pointandtransformingoacktheproductto Fourier
spaceaslongasK = 3M + 1. Thedistribution of pointsfor which K = 3M + 1 is known asthequadratiagrid.

Having derivedtheinitial conditionsin termsof the spectralcoeficientswe mustnow integratethe ordinarydif-
ferentialequationdor the expansioncoeficientsat somefuture time. Normally this hasto be doneusingatime-
stepping procedure such as the leapfrog scheme, i.e.

E,‘ﬂ = F, becomes "' = '+2AtF”"

This schemeis stableprovided |myAt| <1 for all m ; but sincethe maximumvalue of m is M we require
|MyAt| < 1. Intermsof theoriginalgrid, L = 2MAx givingy = T,/ MAx —hencehereis stability provided
|a| < 1/ 1. This shavs thatthe stability criterionis morerestrictive thanfor corventionalexplicit finite difference
schemesHowever, the spectrakschemehasthe greatadvantagethatit hasonly very smallphaseerrorswhich are
not significant een for two gridlength vaves.

Tablel shovshow D andr varywith [ whena = 0.5x (1/m) . Theresultsof usingthespectramethodonthe
testproblemsdescribedn Subsectior?2.6aregivenin Figs.5 and6 . Notetheimpressie characteristicandresults
of the spectral model.

If we startthespectramethodfrom agrid-pointdistributionandusethevalueof M which correspondso thequad-
raticgrid, Eq.(74) givesusanumberof degreesf freedomsmallerthantheoriginalnumberof degreesof freedom
andthereforeuponreturnto grid-pointspaceby meansof Eq. (75) we may not recover the original information.
The resulting“fitted” function displayswhatis known asspectralripples.This doesnot happendwith the linear
grid in which the numberof degreesof freedomin Fourierspacds the sameasthe numberof degreesof freedom
in grid-pointspaceTo illustratethis point Fig. 13 shavs afunctioncomposeaf severalabruptstepsandtheresult
of transformingt to Fourierspaceandbackto grid-pointspaceusingaspectratruncationfor whichthegrid-point
distribution corresponds either to the linear or the quadratic grid for that spectral truncation.
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Figure 13: Step functions spectrally fitted using the quadratic and the linear grids

6.3 The non-linear advection equation

0w _ ow
a = —(A)a)\ (76)

If we acpin use the truncatedérier serie¢70), the right-hand side ¢76) becomes

2M M
F = Z F, explimA] where F, =-i Z (m-m"w, w,, _,, for m=0
m=-2M m'=m-M

Similarly the left-hand side @76) is written as

M
ow _ dwm .
3% z 0t exp[imA]

m=-M
Sincethe serieson eithersideof (76) aretruncatedat differentwave numberstherewill alwaysbearesidualR .
Usingthe Galerkinmethod(the leastsquaregjivesthe sameresult)we now choosehetime derivatiessubjectto
the condition

2n
J’Rexp[—im)\]dA =0 forall m
0
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It can be shan that this yields

—m = F ~M<m<M (77)

Thus,the Fouriercomponentd”,, with wave numberdargerthanM aresimply neglected.This meanghatthere
is no aliasing of small-scale components outside the original truncation and, hence, no non-linear instability

In practicetherearetwo approache$o the problemof calculatingnon-lineartermsin the contet of the spectral
method—using interaction cdiefents or the transform method

(@) Interaction codfcients.
An alternatve way of epressing77) is

dw,,

e = —Z Z ilwkcolJ’exp[ik)\] expl[ilA]exp[—imA]dA

= _Zziwkwllk,l,m where 1, ,, = Ilexp[ik)\]exp[il)\]exp[—im)\]d)\

wherethe I, , ,, aretheinteractioncoeficients.If thereareonly asmallnumberof possiblewaves,
thenit is possibleto calculateand storethe interactioncoeficients. However, for most problems
this is not possible and so the transform method is used for calculating the non-linear terns.

(b)  Transform method.
Using FastFourier TransformgFFTs)it is easyto move from the spectralrepresentatioifspectral
space)to a grid-point representatior(physical space).Therefore,the essenceof the transform
methodis to calculatederivativesin spectralspace put to transformto physical spaceusingFFTs
wheneer a productis required.Once all the productshave beencomputedat grid points, the
spectralcoeficientsof this productfield are calculated—thats we useFFTsto returnto spectral
space. Nw, consider hav we apply this to the non-linear azbtion equation.

Giventhe w,, we wantto computethe spectralcoeficientsof the non-linearterm —(oa—w (i.e.the
F,, on the right-hand side ¢77)). The folloving three steps are required to do this:
0w

(i) Calculatew andD = N

at grid pointsA ; by using the spectral cdieients
w(A)) = Zwm explimA ;] D(A)) = Zimoomexp[im)\_i]
(i) Calculate the adection term at each grid point inystical space
F(A;) = —0(A;)D(A))
(iii) Return to spectral space by calculating tleeiffer coeficients
F, = %_[ZF()\j)exp[—im)\j]
J

In practicethis proceduréhasto be employedto calculatethe spectrakcoeficientsof the non-linear
term at every time level. As the productof the two functionsis computedn grid-point spaceand
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notin spectrakpacewe getaliassingunlessthe numberof grid-pointscorrespondso the quadratic
grid. Even so, products of more thanavunctions will still hae aliassing.

6.4 The one-dimensional gravity wave equations

Sincetheseequationsarelinear, they canbe dealtwith in the sameway asthelinearadwectionequationdescribed
in Subsection 6.2Writing the graity wave equations in terms of the longitude= 21/ L gives

dw  oh _ oh 0w _
% e 0 G tHR O

wherew is the angularelocity 2w/ L . Using

M M
W\ t) = T ,(t)explimA] h\t)= S h,(t)explimA]

m=-M m=-M
it is found that the Galerkin procedureeg

dw,, . B dh,, . _
W+Imghm =0 W"’”TLHOOm—O

Therefore, with centred time &ifences, the time stepping algorithms for tbarker coeficients are

n+1l
m

+1 -1 .
h, " = h, " —2imAtHw,,

m

= W " —2imAtgh”,

Therefore, since our original equations were linggr complete intgation can be carried out in spectral space.

6.5 Stability of various time stepping schemes

6.5 (@) The forwat time sheme

® Linear adection equation

ontoen o,
T__U0|m¢m

Using von Neumann we find
A =1-imUyAt

similar to the FTCS scheme anevai/s unstable a@\| > 1.

(i)  Gravity wave equations
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un+l_un
m mo_ i n
A7 = —gimh,,
hz,;—l—hzl ) N

A =1xiJgHmAt - |\ >1:always unstable.

6.5 (b) The leapfog time sheme
® Linear adection equation

¢nm+l_¢31_l _ . n
20E - _U0|m¢m

A=+/1- USmZ(At)Z—iUOmAt: Al = 1if UymAt<1,but|A >1 otherwiseThereforethe
schemads conditionally stableand neutral,but the stability criterionis morerestrictve thanusing

finite differences as already statedSimbsection 6.2

(i)  Gravity-wave equations

m m - _ H n
A7 = —gimh,,

hn+l_hn—l
m m
20t

A = £J1-gHm*(0t)’ —iJgHmAt: |\ = 1if JgHmAt<1,but |\ >1 otherwiseandthe

stability condition for the scheme to be neutral is more restittian in finite dierences.

_ . n
= -Himu,,

The leapfrog scheme can be represented graphically asdollo

-*-—5;, _— A

2 2Cm
tat

from whichit is clearthatif A¢ istoolarge w,,(¢ + At) cannotstayin the circle andthereforeits moduluswill

increase unlig in the analytical solution.

6.5 (c) Implicit cented sheme
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® Linear adection equation

n+1l n-
¢’m _¢m

20t

1
U + n—
= im0, "+ 05,7

2= (1-imUyht)/(1+imUyAt) - |\ = 1: aways neutral

(i) Gravity wave equations

n+1

n-1

U gy
hn+l_hn—l ~
o m 2Atm = —im= (u"+l+ufn 1)

2= (1-imOtJgH)/(L+imAtJgH) - |A = 1:aways neutral.

6.5 (d) Shallav water equations.

@) Explicit scheme

Non- Iinear equations

ou , Ou O0u _ 0¢

ot Tlax Ty TVt

ov, v, Qg a¢
a9t Tlax Ty TIHT

00, 3, a¢ gau dur_
ot ox TV ¢E5x+ayD

Asume a solution of the form

IN
|

<
[

Substituting we get

expliaAt] —exp[—iaAt]
Ug

Linearized version

ou' ou'
ot *Uoox Ox VO 0 —fov'
av ov' ov'
ot " Uogy tVogy Tl
0 d d

o L.yl +V06¢ P,

= ugexpli(at + mx + ny)]

voexpli(at + mx + ny)]

= pgexpli(at + mx + ny)]

20t
expliaAt] —exp|
Vo

—iaAt]

27t

explialAz] — exp[—iaAz]

%o 20t

£ 00 _
O0x
L9 _ g
0x

ou’
Uox

+imUgug+inVoug—fovg+timoy =
+imUypy+inVovg+ foug+ing, =

+imUypy+inVyhg+i®Py(muy+nvy) =

Lo
ayD_O

|
o

|
o

|
o
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Uy SIN(AAL) + mUgug + nV o+ ifovo + mby =

At =0
UOZ];;Sin(aAt) +mUgpo+nVovg—ifoug+tnd, = 0
¢051-tsin(am) +mUgbg+nV o+ Po(mug+nvg) = 0
ie.
Aitsin(cmt)z +(mUy+nVg)Z +HZ = 0
where

0 ifgm
Pom Pyn 0

ProjectingZ on the eigevectorsX of matrix H , for which
HX =AX O (H-IANX=0 O A-oyym’-dAn’-Afi=0
ie.

)\Z—q:'o(mz‘*nz)—fg =0 O Aps = J—“A/fg““q)o(mz'*nz)

We obtain threeector equations

Aitsin(am)v +(Ugn+ V)Y +AY = 0

O Isin(adt)| = [-At(Ugm + Vo + )| <1

the most restrictie of the three is wheh;, = + A/fé + dJO(m2 + nz)
which gives the stability condition that

1
UM + VN + «/fg + cl30(’”2 + nz)

At <

M = max(m) N = max(n)

The values for the atmosphereof these quantities are CDO=9EILO4m2/s2 ; Up=20m/s;
f0=1041s_1. For a model representingwaves down to a wavelength of ~380 km,
M = N [02.65x 10° m™which gives forAt a\alue of ~4 min

(i)  Semi-implicit scheme
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explialAt] — exp[—iAt] exp([iaAt] + exp[—aAt]) _
Ug 0 =0

+imUgug+inVoug—fovg+imo

2A¢ 27t
expliaAt] —exp[-iAf] | . . . exp([ioAz] + exp[—aAz
Vo Pl ]2At ol ]+|mUOv0+|nV0v0+fouo+|n¢0 2 ]2At oL D - 0
expliaAt] —exp[—iAt] | . . . exp([iaAt] + exp[—aAt
o AR OXBIBE] L i1 170, + iV 0o + 1g(mitg + nug) LELABLTER-aA) _ o
i
Ai:sin(orAt) FimU gty +inVgug—fove+ imdocos(alt) = 0

iv
A—;sin(aAt) +imUqo+inVgy+ fovo+ind,cos(ait) = 0

%)sin(aAt)+imU0¢o+inVo¢o+icpo(muo+nvo)cos(aAt) -0
ie.
'Sin—(:;ét—)z*'(Uom+Von)Z+HZ =0
where

0 ifo m cos(aAt)
—ifo 0 ncos(alAt)
m®,cos(aAt) ndycos(ait) 0

Z = (up Vg @) H

Continuing as aba, the eigevaluesA of H are gven by

A’ = dA(m®+n’)cos’(aAt) —Af5 = 0

A=0

AN —dy(m®+n’)cos’(aAt) —fo=0 O A= ijf§+q>0(m2+n2)cosz(qm)

Hence

Sin(aA?) + At [F2 + do(m? + n?)cos’(ait) +At(Ugm +Von) = 0

If fo = O this gives:

sin(aAt) + Atcos(aAt) JDo(m®+n’) = —At(Ugm + Vn)

The functionon the left handside hasa maximumnegative valuewhen A¢ ,/(DO(mz + nz) <1l,in
which case there is a real solution tor
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1
A + <1 0O MS—F
t(Ugm +Vyn) ¢ Tom +Von
If At,/CDO(m2 + nz) > 1 the condition is less restrigé. The numerical phase speed is:

a

(m?+nd)

Chum =

while the analytical one is\ggn by the same formulaybwith the frequenca,,, given by

Ogna, 1 = —(mUg+nVy) slow solution (or Rossby wave)

Ogna 23 = —(mUg+ nVO)iA/fS + <1>0(m2 +n°) fast solution (inertia—gravity wave

We can therefore compute the dispersion error

Chum a

r =
Canal aanal

6.6 The spherical harmonics

Whenusingsphericalgeometnyit is naturalto expandary dependentariabled in termsof atruncatedseriesof
spherical harmonics

Mol O
oKD = Y OY 0, Y WD (78)
m= Muz:\m\ O

whereA isthelongitudeandpu = sin(latitude) . Again m isthezonalwave numbernow nthetotalwavenumber
andn —|m| represents thefettive meridional vave numberin (78) we can choose the truncation that wanty

(@ If J = M thetruncationis describedastriangular(a modelwith this truncationandm = 40 is
said to be a T40 model).

(b)  Forrhomboidaltruncationd = M +|m|.

Thereasorfor thesedescriptiondbecomespparentvhenwe plot adiagramof permissiblevaluesof n andm for
fixed M ; such diagrams faM = 4are shwn inFig. 14.
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)I( —- M )[( > m
Triangular truncation Rhomboidal truncation

Figure 14. Permissibleales ofm andn for triangular and rhomboidal truncation.

The spherical harmonicsVethe property that

p?y? = Ut Lym (79)

" a
whnere IS the Laplacian in spherical coordinates ants the earth's radius. Another property Is that
here? is the Laplacian in spherical coordi i th h's radius. Another property is th
Y (A W) = Py (wexplimA]

whereP)' is the associated endre polynomial of dgeen and ordenn , which may be computed as

m (n+m) o n
(n—m)! m)!_1 2, 2d (W -1) .
(n+m)| n (1_“) n+m !
n! du

P, (W)=P,’ (W)

m=0

P (w)= A/(271 + 1)

and are orthogonal:

1
1. m, \pm _
5[ Pn (WP (H)dn =5,

-1
The space deratives can be computed analytically as:

=Y = imY) m=0

and using the properties of thedemdre polynomial we ka
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<1—u2>a%yr': = el Y A+ DENYT ., m=20

0 2_ 2D1/2
Snm = B‘n—"ﬂl—[l
@(n —1)0

For m >0 weusethefactthatY,™ = (Y) . With theseelationshipspacederivativescanbecalculatedxactly
leaving a setof ordinarydifferentialequationdor the time rate of changeof the sphericalharmoniccoeficients
¢y -

Normally we have to dealwith non-lineartermsin which two sphericaharmonicsnteractto produceathird. Un-

lessthetruncationis very severethe calculationsarevery time consuming This problemcanbe overcomeby the
transform method introduced in secti®absection 6.3

(@) Startingin spectrabpacethespectrakoeficientsareusedto calculatethe dependentariablesona
latitude—longitudegrid (inversespectraltransform).For a regularly spacedongitudegrid with at
least2M + 1 pointsanda speciallychosenatitudegrid (the Gaussiaratitudeswhich arealmost
regularly spaced), the transformation can be dowaetdy.

(b)  Thenon-lineardynamicsandphysical procesgermsof eachprognosticequationare calculatedn
real space.

(c)  The non-linear terms are transformed back to the spectral domain (direct spectral transform).

In order to perform the spectral transforms it isvemment to introduce thedarier coeficients

2n N
¢ (K 2) = %Tj’cb(?\,u, tyexpl—imAldA = 5 ¢,/ (t)P, (k)
0

n =|m|

Scalarlymultiplying Eq. (78) by eachof the sphericalharmonicsandmakinguseof the orthogonalityproperties
of both the Burier basis functions and thedendre polynomials, we get

1(2m)

o (t) = 4irJJ’ O(A, 1, £)P™ () expl—imA]dAdp
00

which s the directspectratransform.This transformcanbe doneby first performingthe integral with respecto
A . Thisis a Fouriertransformwhich will computethe Fourier coeficients.If the original functionis givenin a
discretesetof longitudepoints,the transformis a discreteFourier transformand,asdiscuseckarlierit is exactif
the longitude points are equally spaced and its number is at least 2M+1.

The integral with respecto the latitude canbe performedfrom the Fourier coeficientsby meansof a Gaussian
guadraturdormulaandit canbe shavn thatthis integral is exactif thelatitudesat which theinput dataaregiven
are talen at the points where

Py, (1) =0

(thesearecalledthe Gaussiaratitudes)with N = (2M + 1)/2 . Furthermoreproductsof two functionscanbe
computedalias-freeif the numberof Gaussianatitudesis N = (3M + 1)/2. The Gaussianatitudesare not
equallyspacedasthe pointsto computethe discreteFourier transformsbut they arenearlyso andthereforethis
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spacing is approximately the same as the longitudinal spacing.

The distribution of pointsallowing exacttransformds calledthe linear Gaussiargrid andit hasat least(2M+1)
longitudepointsequallyspacedateachof atleast(2M+1)/2 Gaussiatatituderows. Productf two functionscan
becomputedalias-freeif we usea quadraticGaussiamrid whichis madeof atleast(3M+1) equallyspacegoints
in each of at least (3M+1)/2 Gaussian latitudes.

The samedistribution of grid-pointsof a Gaussiarmgrid canrepresenglinearor aquadraticGaussiaryrid depend-
ing onthespectratruncationusedin conjunctionwith thatgrid. As anexample the quadratiogrid corresponding
to a spectraltruncationof T213 coincideswith the linear Gaussiargrid correspondindo the spectraltruncation
T3109.

Finally it shouldbe notedthatonly true scalarsshouldbe representedy a seriesof sphericalharmonicshence
whenspectraimethodsareused the primitive equationsareputin their vorticity anddivergenceform, ratherthan
in their momentum (u and v) form.

6.7 The reduced Gaussian grid

WhenusingaregularGaussiamrid asdescribedabove, eitheraquadraticor alinearGaussiamgrid, the numberof
longitudepointsperrow of latitudeis the sameno matterhow closewe areto thepole.Thereforehegeograpkcal
distancebetweenpointsof the samerow decreaseaswe approactthe polesandthe resolution which is nearly
isotropic close to the equator becomes highly anisotropic close to the poles.

Thetriangulartruncationin spectrakpacas isotropicbecausé¢heshortestvavelengthrepresentablévavenumber
n=M) is independenof thewave direction(givenby thevalueof thezonalwavenumbem). Ontheotherhandthe
amplitudeof theassociatetlegendrepolynomialss verysmallwhenmis largeand || approaches. Thissuggest
thepossibility of ignoringsomeof thevaluesof m in the Fouriertransformsat Gaussianatitudesapproachinghe
poles.The numberof longitudepointsneededo represenproperlythe retainedwavelengthss thensmallerand
thedistancebetweemointsdecreaselessdramaticallythanwith theregular(or full) grid, resultingin amoreiso-
tropic resolution.

The Gaussian grid resulting from these considerations is calleddheedGaussiargrid.

In sphericaeometryevenusingthereducedinearGaussiamgrid, thenumberof degreesof freedomin grid-point
spacss largerthanthenumberof degreesof freedomin spectrakpaceandthereforejf we startwith therepresen-
tationof afield in grid-pointspacego to spectrakpaceandreturnto grid-pointspacepartof the degreesof free-
dom in the initial dataare lost and spectralor “Gibbs” ripples appearas a consequencef the spectralfitting.
Neverthelessthe problemis lessnoticeablewhenusingthe linear Gaussiargrid thanwhenusingthe quadratic
Gaussiamgrid becausén theformertheratio betweerthenumberof degreesof freedomin grid-pointspaceandin
spectral space is closer to 1 than in the latter

6.8 Diffusion in spectral space

The linear difusion equation in tev dimensions for aariable A is

94 _ gO%A: K>0
3t

Transformingo spectraspaceandmakinguseof thepropertyof thesphericaharmonicgjivenby Eq. (79), we get
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no_ —Kn(n:l)A?
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Applying theleapfrogtime discretizatiorwe gettwo solutions the physical solutionwhichis unconditionallysta-

ble anda computationakolutionwhich is unconditionallyunstablelf we apply a forwardtime-steppingscheme
we getonesolutionwhichis conditionallystable Finally if we applyafully implicit (or backward)time-stepping
scheme we get

AVt +Dt) - A (t m
n Ag 2 () :—K”(”a+ LAz + a0y
m A, (1)
AL+ D)=

1+AtKn(n +1)/a?

which is a decoupled system of equations and the scheme is unconditionally stable.

Thereis no penaltyfor usinganimplicit time-steppingschemebecauséhe basisfunctionsare eigenfunctionsof
theequationoperatorlt is alsostraightforvardto applyasuperharmonioperatorsuchas 0%, oreven 0% with
ary integer \alue of m. It sufices to substitute in the solutigm + 1)/(12 by (n(n + 1)/a2)m .

6.9 Advantages and disadvantages

6.9 (a) Advantges.
® Space deviatives calculated>actly.

(i)  Non-linearquadraticternscalculatedwithout aliasing(if computedin spectralspaceor usingthe
guadratic grid).

(i)  For a gven accurag fewer deggrees of freedom are required than in a grid-point model.

(iv) Easyto constructsemi-implicit schemessince sphericalharmonicsare eigenfunctionsof the
Helmholtz operator

(v)  On the sphere there is no pole problem.
(vi) Phase lag errors of mid-latitude synoptic disturbances are reduced.

(vii) The use of staggered grids ima@ed.

6.9 (b) Disadvantges.
0] The schemes appear complicated, though &ne relatrely easy to implement.
(i)  The calculation of the non-linear termseala long time unless the transform method is used.
(i)  Physical processes cannot be included unless the transform method is used.

(iv)  As the horizontal resolutionis refined, the numberof arithmetic operationsincreasedasterin
spectralmodelsthanin grid-pointmodelsdueto the Legendretransformsvhosecostincreaseas
N3,

(v)  Spherical harmonics are not suitable for limited-area models.

74 Meteorological Training CourseLecture Series
0 ECMWEF, 2002



Numerical methods £
A\~ 4

6.10 Further reading

The original versionof this noteis basedmainly on a review article by Machenhaueon "The spectraimethod"
whichis Chapter3 of GARP PublicationSeriesNo.17,Volumell. Thatarticle containsfar moreinformationthan
is in this note, xcept for the linear and the reduced Gaussian grids.

7. THE FINITE -ELEMENT TECHNIQ UE

7.1 Introduction

As with the spectraimethod thefinite elementechniqueapproximateshefield of adependentariableby afinite
seriesexpansionin termsof linearly independengnalyticalfunctions.This meanghatthe dependenvariableis
definedover the whole domainratherthanjust at discretepointsasin the grid-point method.The differencebe-
tweenthespectrabndfinite-elementechniquesiesin theform of theexpansiorfunctions:for thespectramethod
these are global functions whereas for the finite elementsatbeonly locally non zero (s&bsection 1.4

There are tw basic steps in the finite-element technique:

(@) expandthe dependenvariablesin termsof a setof low-order polynomials(the basisfunctions)
which are only locally non-zero.

(b) inserttheseexpansionsinto the governing equationsand orthogonalizethe error with respectto
some test functions.

As anexampleconsidehow we canrepresenafield ¢ in finite-elemennotationwhenwe aregiventhevaluesof

¢ atequallyspacecpointsalongthe x -direction.Let the pointsbegivenby x ; (thenodes)ndthe valuesof the
dependentariableby ¢ ; (thenodalvalue)—seeig. 15. Now supposehat¢ varieslinearly betweerthenodes—
thereis a piecavise linearfit. Thereforethe behaiour of ¢ within anelement(the region betweerthe nodes)is

determinedy thenodalvaluesIf we defineasetof basisfunctionse ;(x) givenby thehat(chapeaujunction(see
Fig. 15), the field of¢p can be represented by

¢ =3 ¢je;(x) (80)
J

An example of this is gien inFig. 15. This approach is called collocation method.
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Figure 15. Illustrationsof (a) linearpiecevisefit, (b) linearbasisfunctionsand(c) of how alinearpieceavisefit is
made up of a linear combination of basis functions.

Anotherapproacho the calculationof the expansioncoeficients ¢ ; whenwe aregivena continuousfunctionis
to minimizethe distancebetweerthe continuoudunction ¢ andthediscreteapproximationz ¢ je;(x) . Inorder
to applythis approachye needfirst to definea topologywhich is usuallydoneby defininga scalarproduct( , )
andthe correspondinghorm IIqJII2 = (W, ®) ; thereforethe spaceof functionsis given the structureof a Hilbert
spacelt canbe easilyshavn thatthis proceduregivesthe sameresultasthe Galerkinapproachof scalarlymulti-
plying both sides of80) by each of the basis functiong x)

(9, e,(x)) = 5 ¢ (e ;(x), e,(x)) (81)
J
which is a system of simultaneous linear equations for the umknoeficients ¢ ;.

7.2 Linear advection equation

7.2 (a) . Once agin we consider the linear aghtion equation with periodic boundary conditions
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Defineameshof pointsx; = (j—1)Ax, j = 1,2,...N + 1with Ax = L/ N . We assumehatthe finite-ele-
ment approximation to thexact solution has a piewese linear representation using the as the nodes.

N+1
o(x,2) = 5 ¢,(t)e;(x)
Jj=1
Substituting in the original equatiorvgs
_ <do; de;
R - 2Wej+uoz]¢1a- (82)

whereR istheresiduallf wesimplysetR = 0 (pointcollocation)we have the problemthatde ;/dx is notde-
finedatthe nodeslf thisis overcomeby makingfurtherapproximationsve endup with the usualcentreddiffer-
enceapproximationHowever, the useof higherorderfinite-elemeninterpolationwith point collocationdoesnot
lead to standard higher orderfdience schemes.

An alternatve approachis to usethe Galerkinmethodwith the basisfunctionsasthe testfunctions(the least-
squares method\gs the same results). Therefore, weeha

[Redx = 0 i=12..N+1 (83)

Substituting forR from (82) into (83) gives

do .
g—(%.[e dx+uoz¢JJ'dxedx—0 (84)
0

Sincethe basisfunctionsarehat-functionstherearegoingto be mary combinationsf ; and; for whichthein-
tegralsarezero.In fact, for a given j, therewill only be non-zerocontritutionsfor i = j—1, j, j+1 (thatis
x;_1Sx<x;,q). Itis easy to shethat

1 2 2
Iej+lejdx = éAx J’ejdx = §Ax
dejJ_r 1

1 = - —_— -
I & e;dx = 12 J’ e dx =0
deJ+p
Iej+pejdx—0 . ——~e;dx =0 p>1
Using these results {{84) gives
106940 9j-10, , div1=®io1g_
60 dr +4dt+ g Ot%d 2ay 00 (85)

Wefind thatthisimplicit scheméiasaslightly smallertruncationerrorfor thespacelerivative thantheusualfourth
order scheme.
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Now considerhow the schemedefinedby (85) is used.in practice.Let F’; representhetime derivative of ¢ at
node; and time lgel n .

d—t' =F} (86)
Applying (85) at time leel n yields
%(Fj+l+4Fj +F'_)) = -uogj%j’f‘lg for all j (87)

Sincethe RHS of (87) is known, this setof simultaneoudinear equationanbe solvedfor all the Ff . The next
step is to introduce a time stepping schenoe.ekample, if the leapfrog scheme is ug8é) becomes

07"t = ¢ T+ 20t R (88)

To study the stability of this scheme we comHi@ig) and(88) to give the complete numerical algorithm

0T + 49" 4 9h ] = 07 (1+6a) +4¢] + 97, ,(1-6a) (89)

andthenusethevon Neumanrserieamethodn theusualway. For thisschemet canbeshavn thatthereis stability
if o = uyAt/Ax < /3 thisis morerestrictive thanfor the correspondindinite differenceschemewhichis cen-
tredin spaceandtime. Furtheranalysisshavs thattheschemas neutral(D = 1), with therelative phasespeedf
the plysical mode being gen by

1 0 0
r = gt 0
7 Os*-p*)" 0
p = —asing s = 2+ coy gosq q = 27“

The variation of D and r with [ for the finite elementmethodis given in Table 3 for the casewhere
a = 0.5x (1/./3) . Also theresultsof usingthis techniqueon thetestproblemgivenin Subsectior2.6areshavn
in Figs.5 and6 . Comparisorof thesewith theresultsfrom the fourth orderleapfrogschemeshaws thatthey ap-
pear to produce forecasts of a similar qualitye major disachntage of this method is that it is implicit.

Theschemalefinedby (87) and(88) (or (89)) is athree-level schemelf atwo-level schemas required(i.e. afor-
wardtime differencewe cantake the Crank—Nicolsorapproachandusea weightedmeanof the advectionterms
at time leelsn andrn + 1 with weightsp, andp, , ;. The &pressions corresponding (®7) and(88) are then

1 n n n n+ n
SF L+ AF+F ) = B, AT 4 BLA]

0" 5 = 0"+ ALF)

which can be combined tovgi

0" 1 (1-30B,, )+ 40" T+ 911 1(1+30aB,, 1) = ¢} 1(1+3aB,)+ 40", ,(1-3aB,)
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A stability analysisshaws thatfor 3, > 1/2 thereis instability, whereador 3, < 1/2 thereis absolutestability
with B, = B, ;1 = 1/2 giving aneutralschemsi.e. no damping thoughtherearephaseerrors).As the explicit

schemajivesa coupledsystemof equationsno penaltyis paidin usinganimplicit approachwhichis absolutely
stable if both systems can be salwsing the same kind of selv

7.2 (b) . In the piecavise linear elementrepresentationthe function is obligedto behae linearly between
nodes.To improve this fit we canusesecond-ordepolynomialsasthe basisfunctionsasthe convolution polyno-
mialsrepresenteth Fig. 16. With thisrepresentatiomwe getnot only continuity of thefunctionatthenodesasin
the piecwise linear caseut also continuity of the first destive.

V724

J=-2 4=t 3 S+ I+2 3+3 J+a

Figure 16. Second order polynomials as basis functions.

2 4

42
Figure 17. Linear together with quadratic elements.
An alternatve is to use simultaneously linear and quadratic elements as the onadrsh. 17.

Wedon'tautomaticallygetcontinuityof thederivative atthenodesn thisrepresentatiorbut thefit of agivenfunc-
tion between the nodes can be inyau.

Now, if we applythe Galerkinapproacho thelinearadwectionequationaswasdonein the pieceviselinearrep-
resentation, we get a similar system of simultaneous equations
AW = " (90)

but the matrix insteadof beingtridiagonalasit wasin equationg89) is a lesssparsematrix andthereforemore
expensve to sole.

7.3 Second-order derivatives

Let usnow turnto thetreatmenby meansof finite elementof anequationinvolving second-ordespacederiva-
tives.As anexample wewill shav how finite-elementechniqgueganbeusedo solve asimpleHelmholtzequation
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A first alternatve is to use quadratic elements as the basis functions and use the Galerkin method as before

2

0% e B S (ee) = 0 92)
. ,e [1— (e, e;) =
g JDde Jl:l g JNTJ

sothatthesecondieriativesof thebasisfunctionscanbecalculatedanalyticallyandthenthefive-diagonakystem
(92) soled.

A second alternate using linear elements is as folla

Let us assume that we use the scalar product of dpatteat is

L
(f.g) = jfgdx
0

then(92) can be written as

dzej 2 _
J X J
The first term can be irgeated by parts

de; de; 1L de.de;
e dx = [_Je} I
‘rdxz g dx "o dx dx

thefirst termof theRHSis zerofor all i # 1 andi # N + 1, andnow all thederiativesarefirst orderandcanbe
calculated analytically using linear elements.

The matrix of the resulting system of equationsis tridiagonal except for the elements (j =1,7i = 1),
(j=2i=1),(j=N+1i=N+1),(j=N,i=N+1).

7.4 Boundaries, irregular grids and asymmetric algorithms

Thefinite-elementnethodcaneasilycopewith boundariesindirregulargridsby choosingsuitablebasisfunctions.
Also asymmetrialgorithmscanbe derived by choosingtestfunctionsthataredifferentfrom the basisfunctions.
Theseaspectof thefinite-elemenmethodwill beillustratedby their applicationto thelinearadvectionequation
using a linear pieeese fit.

7.4 (a) Boundaries.Supposeve have boundariesaatnodes;j = 1 andj = N + 1. Making alinear piece-
wisefit it is easyto seethatthe basisfunctionsfor 2< j < N aretheusualhatfunctions,whereaghe basisfunc-
tionsassociatewvith theboundarynodeshave avalueof 1 attheboundaryfalling to O atthefirst internalnode(see
Fig. 18). The usual Galerkin procedure thewnes
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1@4’2 2d¢1D |j1)1_¢2|:| -0
30ar az 0" Ax O

1o,y do;  d J+1D 1= ®in_ ;
EDT+4a-+ p” Ot %o[ Ax D—O 2<j<n (93)

1|jj¢N +2 ¢N+l[| d)N+1 ¢N[] 0
30dr dz 0" Ax

This set of equations can be sahfor thedd/d¢ at all nodes, including the boundary nodes.

Now aparadoxariseswe know thatthelinearadwectionequatiorhasauniquesolutiongivenasuitablesetof initial
andboundaryconditions putthesystem(93) givesus,in principle,thevaluesof d¢/dz¢ atall nodesand,therefore,
doesnotallow usto specifyary boundarycondition.Thesamds truefor theHelmholtzequatiorof Subsectiorr.3.

The solutionof this paradoxs thateitherthe matrix of the resultingsystemis singularand,therefore the system
of equationscannotbe solved, or the systemis over specifiedandthe solutionwe getdoesn'tcorrespondo the
boundary conditions.

The cureis thento scalarlymultiply only by the interior elementghatis, usein (84) or (92) only the valuesof
2<i< N andcomputey,; andy, ,,; fromtheboundaryconditions.ThesystemthenhasN —1 equationsand
can be soled for thelNV — 1 interior coeficients Y;(2<j<N)

7.4 (b) Irgular grids. Usingthebasisfunctionsshavn in Fig. 18, it is straightforvardto shaw thatthe fi-
nite-element formulation of the aglstion equation on an igalar grid is

1y dy; dy, dllJ
6Eﬂd’tl Zdt Xi_1/2F 6 dt J+lgﬁxj+1/2+uo('~|-'1+1 $;_4) =0

Naturally this reduces t@5) when the grid is uniform, i.éx;_, = Ax;,; = Ax.

7.4 (c) Asymmetric algorithmsSofarthe choiceof linearbasisfunctionshasleadto symmetricalgorithms.
However, this symmetrycanbe broken by usingasymmetridestfunctions.For example,the useof the basisand
testfunctionsillustratedin Fig. 15 in the adwectionequationproducesan algorithmwhich hassomeof the char-
acteristics of the upstream finitefdience scheme.

1ijj 1 2 |j'|JJ J 10 _ 0
30 dr dtD Yoo px O
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Figure 18. llustrations of (a) linear basis functions in the vicinity of a boungdrjnear basis functions for an
irregular grid and (c) linear basis and test functions whichlavgve asymmetric algorithms.

7.5 Treatment of non-linear terms

Consider the treatment of the non-linear tern in the one-dimensioretafvequation

ou Ju _
Ft- + ué-; =0
A straightforward one-step approach is to use
_ _ au _ de-
u—Zujej —b—;—ZuJ-Ef
J J

Substitution in the non-linear equation and making the Galerkin assumption yields
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1 Ou;,q+2u)) (w;_1+2u;)

16w, du;, du._ u
_ﬁj St J gy it 2A: 2 3 (uj+1_uj)+Tj(uj_uj—1)E

64 dr dt dz

0-
O

Alternatively, atwo-stepmethodcanbeused.n this we first find the bestpiecavise approximatiorto D by using
the Galerkin assumption

1 _Ujr1TU
6Dj+1+4D;+D;_y) = #

Having solvedthis setof equationdor the D ;, the secondstepis to find the bestapproximatiorto «.D by again
using the Galerkin assumption

1oy ,du; du;

60 dz dt dt

1
E = —ﬁ{ uj_(D;j_1+Dj)+u; (Dj1+D))+u;iD;,,+6D;+D;_,)}

J=

This is moreaccuratehanthe one-stegprocedurebut it hasthe disadwantagethatan extra matrix inversionis re-
quired to find theD ; .

Finally, it is worth notingthatfinite elementschemeslo notappeato suffer from aliasingandnon-linearinstabil-
ity. This happensdecausehe interactionsvhich normally give riseto aliasingareheavily smoothedn thefinite-
element method.

7.6 Staggered grids and two-dimensional elements

e

e J"'ﬁ

- » —3- X
1—% j+% %

Figure 19. Staggered piegse linear elements.

In Subsectior#.3it wasshawvn thatit is naturalto usea staggeredyrid whendealingwith the gravity-wave equa-
tions.Thereforewewill now considetthefinite-elemenapproximationsgo theseequationsisinglinearbasisfunc-
tions and a staggered grid.

Define two sets of basis functions ( ande; . ;,,) shawn inFig. 19and assume that
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h = Zhjej and u = zuj+l/2ej+l/2
7 7

Substituting thexpansions in the follwing equation

oh ou _
&"'Hé; - 0

and using the Galerkin procedure with theas test functions ges

dh de .
—dree. . —Jr1/2
Z dtIelede+quJ+l/2IeJ 0x dx
Calculation of the intgrals leads to

lﬁjhj—l_,_dfdhj_,_dhj+1D+H(uj+1/2—uj—1/2) -0

60 dt d¢ dt U Ax

The corresponding finite element approximation to the other equation

ou , 0h _
ot +g0x =0
is the followving

}ﬂjuj+3/2+4duj+1/2+du_i—1/2D+ g(hj+1_hj—1)

60 dr dz a0 Ax =0

7.7 Two dimensional elements

With rectangulameshwe candefinerectangulaelementswherethe linear basisfunction e;;(x, y) associated
with node(i, j ) hasavalueof unity atthis nodeandfalls to zeroatthe 8 adjacenhodeg(seeFig. 20). A variable
¢ can then bexgpanded in terms of these basis functions.

O(x,y,t) = Z¢ijeij(x’ y)
ij

Substitutinghisin theoriginal partialdifferenceequatiorandusingtheusualGalerkinprocedurdo orthogonalize
the error leads to a set of equations describing thevizelaf the &pansion codicients ¢, ; .
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Figure 20. llustration of a vdimensional linear basis function for a rectangular grid. In the shaded area the
basis function is non-zero; the basis function is zero at nodegdnlayle and unity at the node meadkX.

For solvingequationawvith sphericalgeometryit is possibleto generate grid of icosohedrawith eachtriangular
facedividedinto equilateraktriangles.Eachelementhenhastheform shavn in Fig. 21. To illustratethekind of
algorithmsproducedjustoneexamplewill begiven.Usinglinearelementst canbeshowvn thatthefinite element
description of the deratve D = d¢/0x is

Z(Dy+ Dy + Dy + 6D+ Dyt Do+ D7) = =2=[(9; = 01) + 205 ) + (87~ 5)]

Cullen (1974) has used this approach in a prmigéiquation model using spherical geometry

6 7

Figure 21. An element is made up of 6 triangles.

7.8 The local spectral technique

Oneof theadvantage®f thefinite-elementmethodis the possibilityof usingirregulargridswhile still maintaining
a high degreeof accurag, asopposedo thefinite differencetechnique This allows usto defineelementavhose
shapeis adaptedo the geometryof the domainin which we wantto solve our equationsThis possibility is the
basisof the successhatfinite elementshave hadin engineeringoroblemsinvolving complicatedstructuresThe
main weaknes®f the methodis that, inside eachelementthe functionis assumedo have a linear behaiour, or
otherwisewe endup with a systemof equationsvhosematrix is not sparseand, therefore,is very expensve to
solve both in terms of CPU time and storage memory

A way roundthis problemis providedby thelocal spectratechniqueln this approactwe definea setof local do-
mains justasin thefinite-elemenmethod but we useinsideeachelement spectralepresentatioriakingasbasis
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functionsa setof Lagrangenterpolatingpolynomialsandimposingcontinuity of the solutionthroughtheelement
boundariesThis givesus a systemof equationswith a blocked matrix, eachblock beingdiagonalandtherefore
very sparse.

Thetechniquas verywell suitedfor implementatioronaparallelcomputeiif theinterior of eachelements solved
in asingleprocessqrthecommunication®einglimited to passingasmallquantityof informationbetweemearest
neighbours only

7.9 Application for the computation of vertical integrals in the ECMWF model

In the semi-Lagrangiawersionof the ECMWF forecastmodel,the verticaldiscretizatioris needecdnly in order
to computetheverticalintegralsof the continuityandthe hydrostaticequationsThe quantitiesto beintegratedare
definedat“full” levelsandtheintegrationis performedby the mid-pointrule, sothattheintegralsarein principle
only availableat “half” levels.Extrapolationor averagingto full levelscompromisehe second-ordeaccurayg of
the intgyration.

As an alternatve, a finite-elementschemehasbeendevelopedusing cubic splinesas basisfunctions. TheseB-
splinesdiffer from the cubic splinesdefinedin Subsectiorb.3. The B-splinesare definedas piecevise cubic (at
eachinterval) polynomialswhicharenon-zeraonly over 4 grid intervals,whosezeroth first andsecondlerivatives
are continuous and whose igtel over the whole domain is prescribed.

Thesepolynomialscanbeusedasbasisfunctionsfor thefinite-elementnethod Unlike the casewith the piecavise
linear elementsyve cannot usethe collocationmethodbecausehe coeficientsof the expansionof a functionin
terms of these basis functions are not thees of the function at the nodes.

Let's compute thealue of a ertical inteyral using this method:

F(x) = [f(y)dy
0

Thenwe expandboth F(x) andf(y) asalinearcombinationof B-splines(the basisfuctionschosernto expandboth
functionscouldbedifferent.In our casethey arethesameexceptfor theboundariesvherethey aremodifiedto suit
the appropriate boundary conditions)

N X

N
> Wid;(x) = > LIJiIei(y)dy
i=1 i=1 0

Now we apply the Galerkin procedure using some “test functigpg” t

N 1 N 1 x
> Wifd(x)t(x)dx = Y luif{t (%) jei(y)(dy)}dx
i=1 0 i=1 0 0

which can bexpressed in matrix form

AV=B) => Ww=4

'BY (94)

Theinitial informationwe getto performtheintegral is the setof valuesof f(x), say;?, atthe“full levels” of the

modelandthefinal resultwe needis thevalueof F(x) alsoonthefull levelsof themodel,say F . If we choosehe
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numberof basisfunctionsthe sameasthe numberof degreesof freedomof f(x) (including appropriateooundary
conditions)thentransforminghis setof valuesto thevector () is simplyamatrixmultiplicationby asquarematrix,
say S , andtheprojectionfrom ¥ to thevaluesof F(x) is amultiplication by anothematrix, say,S'_1 . Therefore
expression94) can be written as

F =87"A"BSf

and the matri@'_lA_lBS is our intgration operator

8. SOLVING THE ALGEBRAIC EQUATIONS

8.1 Introduction

In all themethodsve have seerfor solvingthepartialdifferentialequation®f atmospherienotionwefinally arrive
atasetof simultaneousilgebraicequationsvheretheunknavnsarethegrid pointsor the coeficientsattime step
t + At and we hee to sole this system.

The spectral method leads to the simplest case where the matrix of the system tecbe solv
Ax =B

is diagonaldueto theorthogonalityof thebasisfunctionschosenandsothe equation®of thesystemaredecoupled
from oneanotherThesolutionthenis straightforward,eachequatiorhaving only oneunknavn. Ontheotherhand,
aswe saw in the chapteron the spectraltechnique the transformationgo grid-point spaceandbackto spectral
spacearevery expensve in termsof computing,mainly whenthe numberof degreesof freedomin the modelis
increasedndsofinite-differenceandfinite-elemenmethodscannotbe discardedevenin the horizontaldiscreti-
zation.

In thesecasesthe systemof algebraicequationsve arrive atis coupledmostlyin theform of tridiagonalor block
tridiagonal matrices.

The simplestmethodof solvinga systemof simultaneougquationds by matrix inversion,sothatif matrix A is
non-singularit has an imerseA™" and the system can be transformed into

-1

AAx=A"B O x=A"B

The drawvbackof this methodis that, with large matricestheinversionoperationis very expensve bothin terms
of memory and CPU time.

8.2 Gauss elimination

Let usassumeve have aone-dimensionahodeltreatecby meanf finite differencegcentred)or finite elements
(linear)of dimensionn (thenumberof grid pointsor the numberof elements)We endup with thefollowing sys-
tem of equations atwery time step
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a1xy tayx, =b,
Q19X1 + AopXy T A3X3 = b,
Qp3Xp T Q33X+ Aysiy = b3
an—l,nxn—1+an,nxn = bn

or Ax = B with A tridiagonal

4,4, 0 00 .. O]

appQypazp 0 0 L. 0

0 ayyazzag 0 ... 0
A=lo o

0 o

L Oa,_1,

Themostusedmethodfor solvingthis systemis the so-calledGaus<slimination,or forwardeliminationandback
substitution.The methodis implementedn mostscientific subroutindibrariesand can,therefore be usedby a
simple subroutine call. It runs as folle:

From the first equation, weteact x;

(b1 —ayx,)
X1
a1
and substitute in the second equation
(b1 —ayx,)
A +aypX, tagzpx; = b,
A

now we &tract x,

and substitute in the third equation ... and so on

Whenwe reachthelastequatiorandsubstitutex,, _; from thelastbut one,we areleft with anequatiorin asingle
unknavn which canthereforebe solved andthe resultsubstitutedn the expressiorfor x,,_; takenfrom thelast
but one equation, and so on until wearback at thexpression forx; .

The methodworks aslong asthe matrix of the systemis not quasi-singulaandthe denominatorgpivots) of the
expressiongrenottoosmall.lt is, thereforeusefulto reordertheunknavnssothatthepivotsa,; , @y, — a5/ a4
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are as big as possible; this isvays done in the scientific subroutines from welledeped libraries.

In matrix form, the method is egailent to decomposing the original matAxin the form

A=MKM'
whereK is diagonal and
1 00 ]
m; 1 0
0 m,1
M =
mj+11mj+2
0 1 mj,,
0 1 m,

1

wherej = intEﬂEE andn is the rank of matrixA (MT is the transpose bf)

8.3 lterative methods

Whenthematrixis notassparsesin the previousexampleof Gausslimination,adirectmethodof solutioncould
beintractabledueto memoryand/orCPU limitations,large amountsof bothresource®eingneededor inverting
a lage matrix. The most straightfoard methods are then the itevatmethods. & need to sokvthe system.

Ax = B (95)

andstartoff with aguessx,, for thesolutionx . This notbeingin generathetrue solution,we cancalculateare-
sidual.

Ry = Ax,—B (96)
and use it to get a neestimatex, and a ne residual
R, = Ax;-B (97)

andsoon. If theresidualsR,, aresmallerasrn increasesthe methodcorvergesandwe stopwhentheresidual
becomes smaller than a pre-defined magnitude.

The general procedure for iterstimethods can begressed as folles

Ax = B

98
o lAx = OB (98)

whereQ is known asthe splitting, or preconditioningmatrix andcould be simply the unity matrix. Thenwe add
and subtract x
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x+(Q'A-)x = Q'B (99)

x=(1-Q'A)x+Q'B (100)

we then obtain thén + 1) th iteratve estimate ok from then th estimate by

X"*1= (1-07'AX"+Q7'B (101)
This equation can be vieed as the discrete analogue (with unit time step) of

% - 0'Ax+Q7'B (102)

which has a stationary solution when the right hand side becomes zero.

The general solution of/elutionary problen(102)is
X = exp[At]-k (103)

whereA is aneigervalueof matrix —Q_lA (thediagonalelementsf thediagonalized—Q_lA matrix) andk is
aconstanvector Thesolutionapproachethestationarysolutionx = k whentherealpartof A is negative, that
isto say if all theeigervaluesof matrix Q_lA have realpositive parts(elliptic problem).Thesolutioncanbemade
to corverge quicler by multiplying the eigaralues by a constant greater than 1 (suceesger-relaxation).

Theiterationprocedurg101)is performedsuccessiely over eachcomponenbf vector x ; if we usein theright-
handsideof (101)alwaysthecomponentsf x from the n thiterationthemethodis calledJacobiiteration;onthe
otherhand,if we useontheright-handsideof the new iterationvaluesof thecomponent®f x wheneerthey are
available,the procedurds called Gauss—Seidéteration,it cutsdown the storagerequiremenbn a computeras
only onevalueof eachcomponenbf x (eitherthe n th iterationor the estimate)needsto be keptandit canbe
shavn to cowerge quicler than the Jacobi method.

As an eample, let us wrk out the iteratie solution of the Helmholtz equation in centred finitéedénce form

0%, — A2

Moy = Fy (104)

ij ij

whered® is thediscreteLaplaceoperatorandA;; and F';; areknown. If xZ is the n th iterationfor this solution,
we get the "residual“ector

2 2
O°%x; ;=\ jx; j—F; ;= R} ; (105)
or
2 n
Xp_g t At g e (R4=N )x —F, = Ry (106)

and we tak the(n + 1) th iteration ofx; ; such that the meresidual is zero

"R =0 (107)

n n n n 2
xi—l,j+xi+1,j+xi,j—1+xi,j+1+(_4_)\i,j)xi,j Y
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R".
by — (108)

This is the Jacobi itera® method.

If we proceedor the calculationof the new componentsn the senseof increasingsub-indees: andj, we can
usein (106)thealreadyavailablevaluesof x ;' ; andx/ ;1; insteadof the n th iterationvaluesandwe getthe

Guass—Seidel procedure.

If we multiply in (108)thefractionby afactoru (the overrelaxationfactor)beforeaddingit to xf‘ ; we getthe
successie overrelaxation method or SOR

o0
= x; ;+ 0—=5[y (109)

It canbeshavn that,in aniterative method the short-scalerrorsof thefirst guesawith respecto thetruesolution
corvergevery quickly towardszero.Whatmakesiterative methodsxpensve in termsof computetimeis theslow
convergenceof thelong-rangefeaturesof theinitial error. This suggestshe so-calledmultigrid methodsn order
to speedup the cornvergenceof aniterative methodto the point of makingit competitize with directmethodssuch
as the ones which are described later

If we chosea subsebf grid pointsfrom the original grid, sayoneof every four pointsandsolve the equationover
this reducedgrid, the long-scalefeaturesare seenfrom this grid as shorterscalebecausehey cover a smaller
numberof grid pointsand,thereforethe corvergenceis faster Onceasolutionis foundon a coarsegrid, we inter-
polateit to thefiner grid andrefinethe solutionin this grid. The procedurecanrun over a rangeof grid sizesand
can be iterated forards and backards from the coarser to the finer grids.

A furtherrefinementof the methodis calledthe adaptve multigrid method.In this procedurewne definethefiner
grid onwhichthesolutionfrom the coarsegrid hasto berefinedonly in thedomainregionswherewe find thatthe
truncation error of the completed solutiotteeds a certain predefined threshaltlig.

8.4 Decoupling of the equations

Thefieldsto beforecastedn P.E. modelsarethreedimensionabhnd,thereforethematricesof thealgebraicsystem
towhichwe arrivewhenwe discretizethe partialdifferentialequationsre,in principle,six-dimensionaandthere-
fore too big to be treated directly byyadiirect or iteratte means.

The general system of equations cany@essed as
l
P gAi;’}lenxijk = By, (110
tJ

8.4 (a) Sepable case

The simplest caseauld be that the matrix badtorizable, i.e.

! [
A,.J’?,i” = ciDleZ (111)

but this case is unfortunatelgny rare.
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The procedure wuld then be as folles:

® Define
VAE z;p’}’E;‘xljk = ZD;T’YZ. (112)
J J
where
Y;; = ;szijk (113)
(i)  Solwe
> Cl'Z{" = B, (114)
for each paif(m, n)
(i)  Solve
ZDJ- Y, = Z (115)
J
for each pai(m, i)
(iv)  Finally sole
;szijk = YZ‘ (116)
for each pair(z, j)
8.4 (b) Use of the edgvector matrix.
Let us consider the case of Poisson equation in the three dimensions
2 2 62(1)
O3¢ = F = 0o +—5 (117)
0z
where Dﬁ is the horizontal Laplacian in Cartesian coordinates.
If we apply centred finite diérences in theertical we get the system of coupled equations
O’ +M¢ = F (118)
where¢ is the \ector of fieldsp at the diferent \ertical levels and matrixM stands for
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21 0 ..
1210 ..

M=]01-210 - orankk (the number of keels)

LetE; (j = 1,...K)be the eigevectors of this matrix which form the columns of matfix

Then the systerfl18) may be written as
O°%'+E "ME¢' = F' (119)

where¢’ = E_l¢ andF’' = E'F.

Matrix E""ME is adiagonamatrixmadeof theeigervaluesof M andthereforg(119)is asystenof K decoupled
bi-dimensional equations.
8.4 (c) Purier transform in a bi-dimensionabblem.

Let

OpT pn _
X, ; MZEx -sin and B" =

M
m EmPTlD
o o7 0 z E"B™"sin (120)

1
M . OM O

where

M

;, /2 if =0 or i . .
E' = ! g (direct Fourier transform)

Bl otherwise

taking into account the orthogonality relationship
u m [k 1
3 g = M0, 121)
for the Fourier functions, the original bidimensional system
> > A x; = B (122)
g
is reduced to
Y Al(p)i,; = B™ (123)
J

which areM +1 (p=0,...M) systems of one-dimensional equations from whose solution we can then find
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M .
x;; =2 Z E”o‘cpjsingpﬁn% (inverse Burier transform)

p=0
The reductionof the systemto form (123) canbe accomplishedor matriceswhoseeigervectorsarethe Fourier
basessuchasthe onefor a Poissoror a Helmholtzequation Let us considerthe Poissorequationusingcentred

second order finite ddérences

where

Al O . U, Vi
g=|lAlO. U= Y v = | Ve
01 AI . .
UN VN

U,, being the grid pointalue of the unknen at rav n

V,, being the grid pointalue of the second number aivra

410 100 ...
A=|1-410... | = (010 ...
0 1-410.. 001 ..

The same holds for gnmatrix of the form

abO. ..
. babo..
A =10babd..

whose eigevalues are\ ; = a + 2bcos(j M)
This matrix appears in the finite fifence discretization of a Helmholtz equation.

Calling

Q= [ql dz - qM]
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we hae
QAQ' = diagA\)=A and Q'Q = |
The original system may be written as
Upr1t AU+ U, =V,
Multiplication by Q in this system gies

QU,.:+QAQTQU,+QU,_; = QV,

Theproductof Q by avectorU,, isthediscreteFouriertransformof thevectorU, namelnyk , andthereforewe
get

L~Jk+1+/\0k+0k_1 =V,

and the equation fordarier componenf is
J J J — v/
UpsrtANU+ U,y =V,

whichis asetof decoupledquationdor the FouriercomponentsThis methodis thereforeddenticalto thevertical
decouplingof sectionSubsectior8.4 (b) but, whenthe eigervectorsare the Fourier basisfunctions,thereis the
adwantage of using theaBt Fourier Transform algorithm in projecting onto the eigector space.

8.5 The Helmholtz equation

In mary of the presenforecastmodels the equationof the semi-implicittime steppingschemdeadsto a Helm-
holtz equation

(1-TO%)x = B (124)

wherel is a matrix for the ertical coordinate and its dimension is the numben&f$ein the model.

By the methodof vertical decouplingof Subsectior8.4 we cancorvert set(124)into a setof "horizontal"equa-
tions, onefor eachlevel. Neverthelesspne of the advantageof usingthe spectrattechniqueon a global model
basednthesphericaharmonicss thatthesefunctionsareeigenfunction®f the Laplacianoperatorsothateffec-
tively the setof equationg124) arealreadydecoupledn the horizontalandthe couplingis betweerthe different
vertical levels for each spectral cdiefent of x , that is

(=T 00 = e M e (125)
the system

n

0+ ”_(’; Ul - gr (126)
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is, for fixed (m, n), asystemof N ( N = numberof vertical levels) equationsgasily solved by simple matrix
inversion.

In the caseof finite differencesr finite elementsn the horizontalthingsarenot aseasyandwe have to decouple
the equations in theevtical to arnve at a set of horizontal Helmholtz equations

(1-KO%x = B (127)

whose matrices areewy laige hut sparse.

We cansolve eachsystem(127) by aniterative (expensve) method,by usethe Fouriertransformmethod(if we
have the appropriate boundary conditions) or by a block reduction algorithm agsfollo

Let the problem be to savequation
Dy =G (128)

in two dimensionswhereD is ablock tridiagaonalmatrix asfoundwith centredsecondrderfinite differencesor
piecavise linear finite elements

(129)

whereE is a matrix (normally also tri-diagnal) and the unit matrix corresponding to one dimension. ,

Thereforejf we have discretizeddimensionw by M valuesanddimensiony by N values,E and| areM x M
matrices andD hasN x N blocks.

Now multiply each gen rav by E and add the odd ws immediately abee and belw giving

E -1 00... %
0E’-210-10.. 01+ 9s+ EQy (130)
0 -1 E-O.. s

the fourth block equation reads

(E2—2|)¢4—|(¢2+¢6) = 0g3+0stEQ,

whichincludesonly evennumbered) 's; we canthereforewrite down asystenof equationgor theevennumbered
P's
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(131)

which is of the sameform asthe original systembut with the dimensionreducedandthe methodcanbeiterated
until left with a single block

E®y, = g (132)
E™ is of the form

ECHY = (g2 (133)

In the trigometric identitycos26 = 2(cose)2—1, let® = 2'B and we get

2c0s(2" *1B) = {2cos(r2B)}’ -2 (134)

Now 2cos(2'B) is the Chebyshepolynomial of order2” for which the zeros are

0 2/-10
ag.r) = 2(;05512—”5 j=12..2 (135)
02" 10

by analogy ECis expressible as a product of lineacfors

(r) Z O 2j_1|:|
EY =[] |E—2cosOr—0 (136)
U

Fa) 2r+1|:|

and(132)takes the form

(E-0y)(E-a,l)...(E-al)y; = g
Thematrixis factorizedand thereforethemethodof Subsectior8.3canbeappliedto obtain,for instancey,, , and
from (131)and the same methodrgs Y, Y, ...

Having solvedfor the evennumberedields,the oddnumberednesareobtainedrom the original systemassys-
tems of M x M equations.

REFERENCES
(a) General

Kreiss H. andJ. Oliger, 1973: Methodsfor the approximatesolutionof time dependenproblems WMO/ICSU
Joint Oganising Committee, GARP Publications Series No. 10, 107 pp.

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 97



9 Numerical methods
A\~ 4

Mesinger F. andA. Arakawa, 1976:Numericalmethodausedin atmospherienodels WMO/ISCU JointOrganis-
ing Committee, GARP Publications Series No. 1dluihes | and Il, pp 64 and 499.

(b) Specific

Bates,J.R.andA. McDonald,1982: Multiply- upstreamsemilagrangiaradwective schemesanalysisandappli-
cation to a multievel primitive equation model. Mon. ¥d. Re., 10, 1831-1842.

CarpenterK. M., 1981:Theaccurayg of Gadd'smodifiedLax—\Wendrof algorithmfor advection.Quart.J.R. Met.
Soc., 107, 468-70.

Collins, W. G., 1983: An accurag variation of the two-stepLax—\Wendrof integrationof horizontaladwection.
Quart. J. R. Met. Soc., 109. 255-261.

Crowley, W.R, 1968: Numerical adhction periments. Mon. \Wa. Re., 96, 1-11
Cullen, M. J. B 1979: The finite element method. GARP Publication Series, Nool7).\802-337.

Gadd,A. J.,1978:A numericaladwectionschemewith smallphasespeecerrors.Quart.J. R. Met. Soc.,104,569—
582.

Leslie,L. M. andB. J. McAvang, 1973: Comparatre testof direct and iteratve methodsfor solving Helm-
holtztype equations. Mon. ¥&. Re., 101, 235-239.

MachenhaueB., 1979: The spectral method. GARP Publication Series No.ol7)\M24-275.

Pudykievicz, J. andA. Staniforth,1984: Somepropertiesand comparatre performanceof the semiLagrangian
method of Robert in the solution of the adtiondiffusion equation. Atmosphere—Ocean, 22, 283-308.

Ritchie, H., 1986: Eliminating the interpolationassociatedvith the semi-LagrangiarschemeMon. Wea.Rev.,
114, 135-146.

Robert,A., 1981:A stablenumericalintegrationschemeor the primitive meteorologicakquationsAtmosphere—
Ocean, 19, 35-46.

Robert,A., 1982:A semi-Lagrangiamndsemi-implicitnumericalintegrationschemefor the primitive meteoro-
logical equations. J. Metedsoc. Japan, 60, 319-325.

Strong,G. andG. J. Fix, 1973:An analysisof thefinite elementmethod PrenticeHall Seriesin AutomaticCom-
putation, Prenticédall, 306 pp.

TempertonC., 1977: Direct methodsfor the solution of the discretePoissonequation:somecomparisonseC-
MWF Research Dept. Internal Report No. 13.

Vichene&etsky, R. andJ. B. Bowles,1982:Fourieranalysisof numericalapproximation®f hyperbolicequations.
SIAM, Philadelphia.

98 Meteorological Training CourseLecture Series
0 ECMWEF, 2002



