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1. INTRODUCTION

This lecturehastwo aims.Thefirst aimis to describahedifferencedbetweerthe ECMWF 4dVar and3dVar anal-
ysissystemsandto summarizehe mainfeaturef the currentECMWEF operationatonfigurationof 4dVar. (The
readeris referredto Rabieret al. 2000, Mahfouf and Rabier2000,andKlinker et al. 2000for a morecomplete
description of the ECMWF 4d¥)

Thesecondimis to demonstratégheway in which 4dVarrespondso obsenationaldataby consideringheincre-
ments generated by a single isolated olztam.

2. COMPARISON BETWEEN THE ECMWF 3DVAR AND 4DV AR SYSTEMS

The ECMWEF 4dVar systemis, from the technicalpoint of view, very similar to the 3dVar system Both systems
usethe sameunix scripts,andsharemuchof the Fortrancode.The samebackgrounderror covariancematrix and

obsenationoperatorareused andmostof the peripherataskssuchasfetchingandarchiing of fieldsandobser-
vations are the same for theohanalysis systems.

The main differencesbetweenthe ECMWF 3dVar and 4dVar analyseqapartfrom the obvious differencethat
4dVar includes intgrations of the tangent linear and adjoint models during the minimization) are asfollo
. In 4dVar we performtwo incrementaupdatesThe tangentlinear and adjoint modelsusedduring
thefirst updateincludeonly very simpleparameterizationsf physical processe¢Buizza1994).A
more completepackageof physical parameterizationfMahfouf and Rabier 2000)is includedfor
the secondupdate. However, the parameterizationgare computationallyexpensve. To reduce
computationaéxpensethe secondupdatecarriesout fewer iterationsof minimizationthanthefirst.
. For historical reasons3dVar approximateghe tangentlinear obsenation operatorsusinga finite
difference:
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H'(dx) = H(Sx; + 0x) —H(Sx,) ()

whereas 4d&f uses the true tangent linear operators.

In 3dVar, all obsenrationsfor the 6-hourwindow centredon the analysigtime arecollectedtogether
andarecomparedvith the high-resolutiortrajectoryat the nominalanalysisime. Theincremental
cost function is:

I3x,) = %(an_ﬁ 8X, —SX;) B (S, _, + 8X,, — SX;) 2)

l 1 — I
+5(H (X, ) +H'8x, =) R (H (%, 1) + H'8%, ~y)

In 4dVar, the obsenationsaredividedinto 1-hourtimeslotsandcomparedvith thetrajectoryatthe
appropriate time:

A8%,) = 5(S%, a(t0) + %, (t0) ~ 5%,) BH(S%, _s(t0) + %, (¢ ~ S%5) ®

+ %Z (H(x, _4(z;)) + H'dx,(¢) _yi)TR_l(H(Xn—l(ti)) +H'dx,(2;) -Y;)

3. THE CURRENT OPERATIONAL CONFIGURATION OF 4DV AR

The current ECMWF operational 4diassimilation system is as folle:

Outer resolution: T511 L60.
Resolution of increments: T159 L60
Two incremental updates:

. First update: 50 iterations witlery simple plisical parameterizations.
. Second update: 25 iterations with comprehenptysics.

Physical parameterizations during the second update:

. Vertical difusion.

. Sub-grid scale orographic drag.

. Large scale precipitation.

. Longwave radiation.

. Deep moist corection.

Separat@nalyse®f somesurfacequantities(seaice, seasurfacetermperaturesoil wetnesssnow,
2m temperature and 2m humidity).

4. INCREMENTS FROM A SINGLE OBSERVATION

In my previouslecture,| demonstratethatfor thesimplecaseof asingleobsenrationof amodelvariableatagrid-
point, theanalysisncrementin 3dVaris proportionalto a columnof the backgrouncerrorcovariancematrix. It is
instructive to consider he 4dVar responds to the same obsion.

As before,considerthe non-incrementatormulation,and supposédhat the obsenationis at the gridpoint corre-
spondingo the "™ elemenof theanalysisvector In 4dVar, we mustalsospecifythetime of the obsenation.De-
note this byt; .
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The 4d\ar cost function is:

At = 5(x(t0) —x4) "B (x(t0) =) + S(HX(E) ~y) R (Hx(t) =) )

Notethatthecostfunctionis regardedasafunctionof x(¢,) , whereasheobsenrationis comparedo thegridpoint
value at time ¢;. We caneliminate x(¢;) by noting that x(¢;) is the resultof a modelintegration with initial
conditionsx(t,) . Let us write this as:

X(t) = M, ., (x(to) ®)

The cost function is then:

1 - 1 _
Ix(te)) = 5(x(t0) =x,) BT (X(t)) =x,) + 5(HM,, _ , ((t0) =) R"(HM,, _ , (X(t) -Y) 6)
The gradient of the cost function for the analysis is zevingi(if we ignore2nd order and higher destives):

-1 T T -1 _
B (Xt =X,) + My, _ H'R (HM, _,(X,(t)-y) = O ™

whereMtTO _ ;. represents the adjoint of the model gnegion from timet, to ¢, .

Multiplying throughby B andrearrangingives,asfor the 3dVar example,an expressiorfor the analysisincre-
ment(atthe startof the 4dVar assimilationwindow, time ¢, ). Sincewe have just oneobsenration,the expression
R_l(HM,f0 ~ tixa(to) —y) is simply a scalar andwe find that, whereasn 3dVar, the analysisincrementwaspro-
portional to a column oB , in 4d\&r, it is proportional to a column ﬁMtTO Ly

T

(BMto*t,:)lk
—X,(¢),0 T
X (o) —X%p = g———%(ﬁ)f% (CLUS (8)
o sen
T
_(BMtoﬂt,t)Nk_

A somavhatmoreinterestingequationresultsif we multiply bothsidesof Eq. (7) to theleft by M, ..B before
rearranging:

T

(M, . BM, ).,
My, o (alte) —Xs) = %Lz(t)’*@ (Mr, - BM, - 1) ©)
o
(M, BM; i
In this case, we note that thepeession on the left hand side is:
Miy =t (Xa(Eo) =Xp) = M, (X (t0)) =M (Xp)= X, (&) =M, (%) (10)
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(Rememberwe are ignoring second order and highenadiies.)

So, theleft handsideof equation9 is the differencebetweerthe analysisandthe forecastfor time ¢; with initial
conditionsgivenby thebackgroundttime ¢, . In otherwords,theleft handsideof Eq.(9) is thedifferencebetween
theanalysidrajectoryandthebackgroundrajectoryatthetime of theobsenations.This differenceis proportional
to a column ofM, tiBMtTO Lt

Now; if B is thecovariancematrixfor errorsin thebackgroundattime ¢, , thenthematrix M, t_BMtTO _, isthe
covariancematrix for errorsin aforecastfrom time ¢, to ¢; with initial conditionsequalto the backgroundThis
is easy to see:

Underthetangentinearassumptionandfor a perfectmodel,thebackgrouncerrorsattime ¢, and¢; arerelated
by:

€y(to) = My, -, Es(t) (11)

So, the cwariance matrix for background errors at tigds:

(e T i re s TmT T
e(t) (&) = My _ &5t (&) My, = My BM, 12)

To summarizeln 4dVar, the analysisincrementat the time of the obsenation is given by the column of the
evolved covariance matrix. This matrix describeserrors in the backgroundtrajectory at the time of the
obsenation. Thecovariancematrix is implicitly evolved by 4dVar usingthe dynamicsof thetangentinearmodel.
As a consequencehoth the covariancematrix at the obsenation time and the analysisincrementsare flow-
dependent

For anobserationat the beginning of the 4dVar assimilatiorwindow (i.e.for ¢; = #,) thematrixM, _, isthe
identity matrix. (Integrationof thetangentinearmodelfor no timestepsioesnothing!) In this case gquation9 is
identicalto the 3dVar case Theanalysisincrementdor an observatiorat the beginning of the 4d\ar assimilation
windoware thesameaswouldbeproducedn 3d\ar. Thisillustratesthe mainshortcomingpf 4dVar. Namely that
ateachcycle of assimilationthe initial covariancematrix is thefixed, staticandflow-independenmatrix B . The
flow-dependentovarianceshich areusedimplicitly duringtheassimilatiorarenot propagtedto thenext cycle.
To propagte these a@riances, we must turn to the Kalman filtnis will be the subject of my relecture.

4.1 Examples

Fig. 1 shavsanalysisncrementdor 3 separat@nalysedor the samedate.Eachanalysishadjusta singleobser-
vationof geopotentiaht 850hR, 40N, 60W. In Fig. 1 (b), theobsenationwasplacedat the beginningof the4dVar
assimilationrwindow, anda cross-sectionf the analysisncrementat the beginning of the assimilationwindow is

shavn. The analysisincrementin this caseis determinecentirely by the backgrounderror covariancematrix B,

andis clearlyalmostsymmetricandwithout ary verticaltilt. (Theslightasymmetnyis probablydueto the effects
of normalmodelinitialization of theincrements.The increments the sameaswould be generatedby 3dVar for

this obsenration. By contrastif the sameobsenrationis placedin the middle of the analysiswindow (Fig. 1 (c))

thenthe analysisncrementalsoin the middle of thewindow, shavs amarkedverticaltilt towardsthejet. (Fig. 1

(a) shavs a crosssectionof thebackgroundzonalwind.) Thetilt is moremarlkedif theobsenationis placedatthe
end of the assimilation windo Fig. 1(d) shavs the increment at the end of the analysis winttothis case.
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(a) Background zonal wind component

_ /5

o~

Figure 1. (a): Backgroundzonalwind crosssection.(b), (c) and(d): Incrementsatthe beginning,middleandend
of the 4d\ar assimilation winde for obserations of 850h& height at 40N, 60W at thedirning, middle and
end of the winda respectiely.
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Theincrementsn Fig. 1 areplottedfor thesametime astheobsenations.Fig. 2 shavsincrementsatthemiddle
of theassimilationrwindow (i.e. atthe nominalanalysistime, 0z) for singleobsenationsat the beginning, middle
andendof thewindow. (Again, threeseparat@analysesreshovn. Eachanalysisuseda singleobsenation.) This
illustratesthat4dVar spreadsheinfomationprovidedby theobsenationsin adynamicallyconsistentvay through-
out the analysis winda

Increments at 0Z from obs at 212

Figure 2. Geopotential analysis increments at the nominal analysis time, 0z, generated biiaisefv
geopotential at 850 40N, 60W at the lgéning, middle and end of the 4aivassimilation windw.

5. A CAUTIONARY EXAMPLE

In view of the resultspresentedabove, it is temptingto ascribethe superiorperformanceof 4dVar (relative to
3dVar) to the dynamicalpropagtion of the covariancematrix. In this section,a simpleexamplewill bepresented

6 Meteorological Training CourseLecture Series
0 ECMWEF, 2002



Assimilation Techniques (4): 4dVar

3

to shav thatthere is moe to 4d¥dr than covariance popagation

Consider a 4dat system with the follging characteristics:

. M is an orthogonal matrix. (That Mt =m" )
. B = o}l
_ 2
. R = gl
. The entire stateector is obserd at some single timg, so thatH= 1.

Now, the covariancematrix of analysiserror at the beginning of the assimilatiorwindow ofa 4dVar systemis the
inverse of the Hessian matrix of the cost function (see xfampleRabierand Courtier1992).

For obserations at a single time, a 4dianalysis has:

Pio(te) = (B +MTHIRMHM) ™ (13)
Now, for our simple gample, we hee:

1

MTH'R™HM = M M= =I= R (14)
O—O 00
In other words, the ceariance matrix of analysis error is:
-1 1,1 1
P‘ZD(tO) = (B +R ) = 2 2| (15)
Op + o,

Thisis identicalto the covariancematrix P35 (¢,) of analysiserrorimplied by the correspondin@d\Var analysis.
At later times during the analysis wingiahe analysis error @ariance matrix is dynamically propatgd:

Pin(t) = M7 (Plp(t))M (16)

However, sincetheinitial covariancematrix is proportionalto theidentity matrix, it commuteswith M, andsince
M”M = | we find that the covariancematrix is constantthroughoutthe analysiswindow, and equalto the
correspondin@dVar matrix. By the sameargument,the covariancematrix of backgrouncerroris alsoconstant
throughout the analysis windo

For the particularsystemdescribedabore, thereis no covariancepropagtion. The covariancematricesof both
analysisandbackgrouncerrorareidenticalto thoseof the correspondin@dVar systemlIt might beimaginedthat
the3dVarand4dVar analysesreidentical. Thisis notthecase Moreover, 4dVar is superiorto 3dVar. To seethis,
let us revrite the 4d\ar analysis equation (assuming a linear model and linear alisereperators) in the form:

T T 1
Xo(t)) = Xp(to) + Pap(t)Myy i H R (y—HM, _,(X,(t0)) 17)

The correspondingdVar analysisequationcorrespondso droppingboth the modelintegrationandthe adjoint
integration fromEq. (17) and replacind®;,(¢,) by Pap(t,)

Xalt)) = Xp(to) + Php(taH R (y —HX,(¢0) (18)
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ComparingEgs. (17) and (18), we seethat the function of the forward modelintegrationin 4dVar is to allow
comparisonof the obsenation with the correspondingmodel state at the correcttime. By contrast,3dVar
compareshe obsenation,whichis valid attime ¢, with themodelstateattime ¢, . Similarly, the functionof the
adjointintegrationin 4dVar is to propagtethe informationfrom the obsenation backin time to the beginning of
the analysis winde. This is missing in 3daf.

Fig. 3 shavs anexamplein which the statevectoris a singlewind vector (u,v)T andthe modeldynamicscorre-
spondsgo rotationof thevectorthroughanangle6(z) . The correctanalysisattime ¢ lies betweerthe obsenation
and the background at tinge Il.e., the analysis should increase the wind spagdhwmuld not alter its direction.

The 3dVar and4dVar analysesattime ¢, arealsoshawvn. 4dVar is optimal. Also shawvn is a so-called3dFGAT
analysiswhichcomparesheobsenationandbackgroundatthecorrecttime, but doesnotpropagtetheincrement
backin timeto ¢,. 3dFGAT is superiorto 3dVar, but is not optimal. The ECMWF 40-yearreanalysigprojectuses
a 3dFGA system.

It is worth reiteratingthatfor this simpleexample thedifferencedetweemdVar, 3dFGAT and3dVar arenotdue
to covariancepropagtion, sinceall threesystemshave the samecovarincematricesof backgroundandanalysis
error Ratherthedifferencesaredueto thedifferentwaysin which themodelstateis propagtedto thetime of the
obsenation, andthe incrementis propagtedto the time of the analysis.Of course,n areal4dVar analysisit is
likely thatcovariancepropagtionplaysatleastsomepartin explainingthe differencesetweer8dVar and4dVar.

X4(to): 4dVar

Xg(tg): 3dFGAT

Xg(to): 3dVar

Xp(t) J y
Correct analysis at tim

Figure 3. An simplexample, shwing the diferences between 4d¥ 3dVar and 3dFGA for an idealized
system.
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