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1. INTRODUCTION

This lecturehastwo aims.Thefirst aim is to describethedifferencesbetweentheECMWF4dVarand3dVaranal-

ysissystems,andto summarizethemainfeaturesof thecurrentECMWFoperationalconfigurationof 4dVar. (The

readeris referredto Rabieret al. 2000,Mahfouf andRabier2000,andKlinker et al. 2000for a morecomplete

description of the ECMWF 4dVar.)

Thesecondaimis to demonstratetheway in which4dVarrespondsto observationaldataby consideringtheincre-

ments generated by a single isolated observation.

2. COMPARISON BETWEEN THE ECMWF 3DVAR AND 4DVAR SYSTEMS

TheECMWF 4dVar systemis, from the technicalpoint of view, very similar to the3dVar system.Both systems

usethesameunix scripts,andsharemuchof theFortrancode.Thesamebackgrounderrorcovariancematrix and

observationoperatorsareused,andmostof theperipheraltaskssuchasfetchingandarchiving of fieldsandobser-

vations are the same for the two analysis systems.

The main differencesbetweenthe ECMWF 3dVar and4dVar analyses(apartfrom the obvious differencethat

4dVar includes integrations of the tangent linear and adjoint models during the minimization) are as follows:

• In 4dVar we performtwo incrementalupdates.The tangentlinearandadjointmodelsusedduring

thefirst updateincludeonly very simpleparameterizationsof physicalprocesses(Buizza1994).A

morecompletepackageof physical parameterizations(Mahfouf andRabier, 2000)is includedfor

the secondupdate.However, the parameterizationsare computationallyexpensive. To reduce

computationalexpense,thesecondupdatecarriesout fewer iterationsof minimizationthanthefirst.

• For historical reasons,3dVar approximatesthe tangentlinear observation operatorsusinga finite

difference:
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(1)

whereas 4dVar uses the true tangent linear operators.

• In 3dVar, all observationsfor the6-hourwindow centredon theanalysistimearecollectedtogether

andarecomparedwith thehigh-resolutiontrajectoryat thenominalanalysistime.Theincremental

cost function is:

(2)

In 4dVar, theobservationsaredividedinto 1-hourtimeslotsandcomparedwith thetrajectoryat the

appropriate time:

(3)

3. THE CURRENT OPERATIONAL CONFIGURATION OF 4DVAR

The current ECMWF operational 4dVar assimilation system is as follows:

• Outer resolution: T511 L60.

• Resolution of increments: T159 L60

• Two incremental updates:

• First update: 50 iterations with very simple physical parameterizations.

• Second update: 25 iterations with comprehensive physics.

• Physical parameterizations during the second update:

• Vertical diffusion.

• Sub-grid scale orographic drag.

• Large scale precipitation.

• Longwave radiation.

• Deep moist convection.

• Separateanalysesof somesurfacequantities(seaice,seasurfacetermperature,soil wetness,snow,

2m temperature and 2m humidity).

4. INCREMENTS FROM A SINGLE OBSERVATION

In my previouslecture,I demonstratedthatfor thesimplecaseof asingleobservationof amodelvariableatagrid-

point, theanalysisincrementin 3dVar is proportionalto acolumnof thebackgrounderrorcovariancematrix. It is

instructive to consider how 4dVar responds to the same observation.

As before,considerthenon-incrementalformulation,andsupposethat theobservation is at thegridpoint corre-

spondingto the elementof theanalysisvector. In 4dVar, wemustalsospecifythetimeof theobservation.De-

note this by .
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The 4dVar cost function is:

(4)

Notethatthecostfunctionis regardedasafunctionof , whereastheobservationis comparedto thegridpoint

value at time . We can eliminate by noting that is the result of a model integration with initial

conditions . Let us write this as:

(5)

The cost function is then:

(6)

The gradient of the cost function for the analysis is zero, giving (if we ignore  order and higher derivatives):

(7)

where  represents the adjoint of the model integration from time  to .

Multiplying throughby andrearranginggives,asfor the3dVar example,anexpressionfor theanalysisincre-

ment(at thestartof the4dVar assimilationwindow, time ). Sincewe have just oneobservation,theexpression

is simply a scalar, andwe find that,whereasin 3dVar, theanalysisincrementwaspro-

portional to a column of , in 4dVar, it is proportional to a column of :

(8)

A somewhatmoreinterestingequationresultsif we multiply bothsidesof Eq. (7) to theleft by before

rearranging:

(9)

In this case, we note that the expression on the left hand side is:

(10)
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(Remember, we are ignoring second order and higher derivatives.)

So,theleft handsideof equation9 is thedifferencebetweentheanalysisandtheforecastfor time with initial

conditionsgivenby thebackgroundattime . In otherwords,theleft handsideof Eq.(9) is thedifferencebetween

theanalysistrajectoryandthebackgroundtrajectoryatthetimeof theobservations.Thisdifferenceis proportional

to a column of .

Now, if is thecovariancematrix for errorsin thebackgroundat time , thenthematrix is the

covariancematrix for errorsin a forecastfrom time to with initial conditionsequalto thebackground.This

is easy to see:

Underthetangentlinearassumption,andfor a perfectmodel,thebackgrounderrorsat time and arerelated

by:

(11)

So, the covariance matrix for background errors at time is:

(12)

To summarize.In 4dVar, the analysisincrementat the time of the observation is given by the column of the

evolved covariance matrix. This matrix describeserrors in the backgroundtrajectory at the time of the

observation.Thecovariancematrix is implicitly evolvedby 4dVarusingthedynamicsof thetangentlinearmodel.

As a consequence,both the covariancematrix at the observation time and the analysisincrementsare flow-

dependent.

For anobservationat thebeginningof the4dVar assimilationwindow (i.e. for ) thematrix is the

identity matrix. (Integrationof thetangentlinearmodelfor no timestepsdoesnothing!)In this case,equation9 is

identicalto the3dVar case.Theanalysisincrementsfor an observationat thebeginningof the4dVar assimilation

windowarethesameaswouldbeproducedin 3dVar. This illustratesthemainshortcomingof 4dVar. Namely, that

at eachcycle of assimilationtheinitial covariancematrix is thefixed,staticandflow-independentmatrix . The

flow-dependentcovarianceswhichareusedimplicitly duringtheassimilationarenotpropagatedto thenext cycle.

To propagate these covariances, we must turn to the Kalman filter. This will be the subject of my next lecture.

4.1  Examples

Fig. 1 shows analysisincrementsfor 3 separateanalysesfor thesamedate.Eachanalysishadjust a singleobser-

vationof geopotentialat850hPa,40N,60W. In Fig.1 (b), theobservationwasplacedat thebeginningof the4dVar

assimilationwindow, anda cross-sectionof theanalysisincrementat thebeginningof theassimilationwindow is

shown. Theanalysisincrementin this caseis determinedentirelyby thebackgrounderrorcovariancematrix ,

andis clearlyalmostsymmetricandwithoutany verticaltilt. (Theslightasymmetryis probablydueto theeffects

of normalmodelinitialization of theincrements.)Theincrementis thesameaswould begeneratedby 3dVar for

this observation.By contrast.if thesameobservation is placedin themiddleof theanalysiswindow (Fig. 1 (c))

thentheanalysisincrement,alsoin themiddleof thewindow, shows a markedverticaltilt towardsthejet. (Fig. 1

(a)showsacrosssectionof thebackgroundzonalwind.) Thetilt is moremarkedif theobservationis placedat the

end of the assimilation window. Fig. 1(d) shows the increment at the end of the analysis window in this case.
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Figure 1. (a):Backgroundzonalwind crosssection.(b), (c) and(d): Incrementsat thebeginning,middleandend

of the 4dVar assimilation window for observations of 850hPa height at 40N, 60W at the beginning, middle and

end of the window respectively.
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Theincrementsin Fig. 1 areplottedfor thesametimeastheobservations.Fig. 2 shows incrementsat themiddle

of theassimilationwindow (i.e. at thenominalanalysistime,0z) for singleobservationsat thebeginning,middle

andendof thewindow. (Again, threeseparateanalysesareshown. Eachanalysisuseda singleobservation.)This

illustratesthat4dVarspreadstheinfomationprovidedby theobservationsin adynamicallyconsistentwaythrough-

out the analysis window.

Figure  2. Geopotential analysis increments at the nominal analysis time, 0z, generated by observations of

geopotential at 850hPa, 40N, 60W at the beginning, middle and end of the 4dVar assimilation window.

5. A CAUTIONARY EXAMPLE

In view of the resultspresentedabove, it is temptingto ascribethe superiorperformanceof 4dVar (relative to

3dVar) to thedynamicalpropagationof thecovariancematrix. In this section,a simpleexamplewill bepresented
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to show thatthere is more to 4dVar than covariance propagation.

Consider a 4dVar system with the following characteristics:

•  is an orthogonal matrix. (That is .)

•

•

• The entire state vector is observed at some single time, so that .

Now, thecovariancematrix of analysiserrorat thebeginningof theassimilationwindow ofa 4dVar systemis the

inverse of the Hessian matrix of the cost function (see, for exampleRabier and Courtier, 1992).

For observations at a single time, a 4dVar analysis has:

(13)

Now, for our simple example, we have:

(14)

In other words, the covariance matrix of analysis error is:

(15)

This is identical to thecovariancematrix of analysiserror implied by thecorresponding3dVar analysis.

At later times during the analysis window, the analysis error covariance matrix is dynamically propagated:

(16)

However, sincetheinitial covariancematrix is proportionalto theidentitymatrix, it commuteswith , andsince

we find that the covariancematrix is constantthroughoutthe analysiswindow, and equal to the

corresponding3dVar matrix. By the sameargument,the covariancematrix of backgrounderror is alsoconstant

throughout the analysis window.

For the particularsystemdescribedabove, thereis no covariancepropagation.The covariancematricesof both

analysisandbackgrounderrorareidenticalto thoseof thecorresponding3dVarsystem.It mightbeimaginedthat

the3dVarand4dVaranalysesareidentical.This is not thecase.Moreover, 4dVar is superiorto 3dVar. To seethis,

let us rewrite the 4dVar analysis equation (assuming a linear model and linear observation operators) in the form:

(17)

The corresponding3dVar analysisequationcorrespondsto droppingboth the model integrationandthe adjoint

integration fromEq. (17), and replacing  by :
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ComparingEqs.(17) and(18), we seethat the function of the forward model integration in 4dVar is to allow

comparisonof the observation with the correspondingmodel state at the correct time. By contrast,3dVar

comparestheobservation,which is valid at time , with themodelstateat time . Similarly, thefunctionof the

adjoint integrationin 4dVar is to propagatetheinformationfrom theobservationbackin time to thebeginningof

the analysis window. This is missing in 3dVar.

Fig. 3 shows anexamplein which thestatevectoris a singlewind vector andthemodeldynamicscorre-

spondsto rotationof thevectorthroughanangle . Thecorrectanalysisat time liesbetweentheobservation

and the background at time. I.e., the analysis should increase the wind speed, but should not alter its direction.

The 3dVar and4dVar analysesat time arealsoshown. 4dVar is optimal.Also shown is a so-called3dFGAT

analysis,whichcomparestheobservationandbackgroundatthecorrecttime,but doesnotpropagatetheincrement

backin time to . 3dFGAT is superiorto 3dVar, but is notoptimal.TheECMWF 40-yearreanalysisprojectuses

a 3dFGAT system.

It is worth reiteratingthatfor thissimpleexample,thedifferencesbetween4dVar, 3dFGAT and3dVararenotdue

to covariancepropagation,sinceall threesystemshave thesamecovarincematricesof backgroundandanalysis

error. Rather, thedifferencesaredueto thedifferentwaysin which themodelstateis propagatedto thetimeof the

observation,andthe incrementis propagatedto the time of theanalysis.Of course,in a real4dVar analysisit is

likely thatcovariancepropagationplaysat leastsomepartin explainingthedifferencesbetween3dVarand4dVar.

Figure  3. An simple example, showing the differences between 4dVar, 3dVar and 3dFGAT for an idealized

system.
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