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Abstract. A statistical retrieval technique for estimating precipitation cloud profiles from TRMM measurements has
been developed. The inversion method is based on the Bayesian estimation theory and implemented by means of the
Minimum Mean Square criterion. The retrieval technique, named Bayesian Algorithm for Microwave-based Precipitation
Retrieval (BAMPR) is trained by a three-dimensional (3-D) cloud-radiation database, generated by inputting the
numerical outputs of a mesoscale cloud-resolving model into a 3-D radiative transfer model. Retrieval products are the
hydrometeor and precipitation rate profiles together with columnar equivalent water contents and surface rainrates.
Microphysical and radiative aspects of the forward problem are investigated, pointing out critical aspects and further
refinements of the proposed technique. Two separate algorithms using the same framework have been developed: an
algorithm for TMI data only (BAMPR-P, where “P” stands for passive), and a combined algorithm that uses both TMI
and PR data (BAMPR-C). Applications of the two retrieval methods to TRMM data concentrate on'the case of the
Hurricane Bonnie on August 25, 1998, which is analyzed and discussed in detail by using TRMM official products as a
comparison. ‘

1 Introduction .
Retrieval of precipitation profiles from spaceborne microwave sensors has received a new incentive after the
launch of the Tropical Rainfall Measuring Mission (TRMM) platform in 1997 (Kummerow et al., 1998). The
coexistence of the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) instruments aboard TRMM
represents an unprecedented opportunity to exploit, and possibly to merge, passive and active spaceborne
microwave measurements. |

Several inversion techniques have been proposed and applied in the last two decades for estimating cloud and
precipitation parameters from measurements taken by space-borne microwave radiometers -- especially, the
Special Sensor Microwave/Imagers (SSM/Is) flown aboard spacecraft of the U.S. Defense Meteorological
Satellite Program (DMSP) (see Wilheit et al., 1994 and Smith et al., 1998 for comprehensive descriptions of
several SSM/I algorithms). Among these techniques, we enumerate the approaches based on multiple
regression and on Maximum Likelihood methods. Recently, Bayesian techniques have been proved to have a
large potential and flexibility for precipitation profiling (Evans et al., 1995; Pierdicca et al., 1996; Marzano et
al., 1999). Their unique feature is that they constitute a rigorous statistical framework in which'to develop
cloud-model based inversion methods and combined multisensor approaches. As opposed to empirical
methods where measurements of both brightness temperatures and precipitation parameters are collected to
train a retrieval algorithm, the model-based approaches resort to refined physical models to simulate the
measurements (Mugnai et al.,, 1990; Smith et al., 1992; Mugnai et al., 1993; Smith et al., 1994a, 1994b;
Kummerow et al., 1996). This point of view offers the possibility to avoid in situ measurements and to deepen
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the understan,ding‘ of the problem. On the other hand, model—based approaches have to tackle the critical issue
of tuning simulations to the measurement manifolds in order to be representative of real observations
(Marzano et al., 1994; Panegrossi et al., 1998).

Following the Tropical Ocean Global Atmosphere — Coupled Ocean Atmosphe‘ré Response Experiment
(TOGA-COARE) in 1993, several researches have dealt with the comparison of contemporary active and
passive microwave observations of precipitation; however, relatively few attempts have been made in order to
combine radar and radiometer measurements within the same precipitation retrieval scheme (Meneghini et al.,
1994; Schols and Weinman, 1994, Marzano et al., 1995; Olson et al., 1996; Haddad et al., 1997; Marzano et
al.,, 1999). On one hand, radiometer measurements can be used to properly account for the contamination of
radar echoes due to fairly strong hydrometeor attenuation at frequencies above 10 GHz (Iguchi and
Meneghini, 1994; Meneghini et al., 1997; Smith et al., 1997). On the other hand, the radar range resolution
can help the retrieval algorithms to better define the near-surface precipitation vertical profile (Testud et al.,
1992; Marzano et al., 1994). The TRMM platform offers a unique opportunity to develop and test algorithms
for TMI and PR combined precipitation retrieval, even though the different scanning geometry of the two
instruments has to be carefully taken into account.

In this work, we describe the methodological features of Bayesian algorithms trained by three-dimensional (3-
D) dynamical cloud-resolving model outputs combined with 3-D radiative transfer models. Microphysical and
radiative aspects of the forward problem will be also discussed. Finally, applications of the precipitatibn
retrieval methods to TRMM data will be shown. In particular, the case of the Hurricane Bonme on August 25,
1998 w111 be analyzed and discussed in detall

2 Retrieval schemes ,

The block-diagram of the Bayesian Rainfall Algorithm for Microwave Sensors (BAMPR) is shown in Figs. 1
and 2 for single-sensor (radiometer, BAMPR-P) and for combined sensors (radiometer plus radar, BAMPR—C)
cases, respectively.

2.1 Using single sensor (TMI)

In Fig. 1, the two grey-contoured boxes refer to the two main blocks common to all physically-based retrieval
approaches (Mugnai et al., 1993; Smith et al., 1994a; Pierdicca et al., 1996; Kummerow et al., 1996) They
are generally referred to as the “forward problem” and the “inverse problem”.

The forward problem consists in the generation of a database, in which the simulated brightness temperatures
(TBs) that would be measured by a space-borne radiometer, are associated to the various cloud structures
generatéd by a cloud-resolving model. The cloud-radiation database generation block accounts for the
simulation of the upwelling TBs corresponding to each cloud structure. In the propoSéd scheme, we associate
to each set of TBs a slanted profile (according to the 53.1° viewing angle of the radiometer) at the resolution
of the 37 GHz channels. This association is not straightforward, especially in the case of a 3-D geometry
approach as explained in Sub-section 3.2.1. The spatial correlation matrix is also computed by considering the
~ spatial variability of the simulated TBs at the various channel resolutions within the simulated scenario: The
output of the forward-modeling procedure is the construction of a statistically 51gruﬁcant cloud-radiation
database

In the inverse problem, the cloud-radiation database is therefore used to train the Bayesian inversion
algorithm, whose products are the hydrometeor and precipitation rate profiles together with the hydrometeor
columnar contents and the surface rainrates (Marzano et al., 1999). The Bayesian technique has been applied
by resorting to the Minimum Mean 'Square (MMS) criterion, which will be described in Section 4.
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Fig 1: Scheme of the Bayesian Algorithin for Microwave-based Precipitation Retrieval for TMI

precipitation profile retrieval (BAMPR-P). TBy, stands for the simulated TBs, while G, stands for their
spatial variations.
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Fig 2: Scheme of the Bayesian Algorithin for Microwave-based Precipitation Retrieval for TMI-PR
combined precipitation profile retrieval (BAMPR-C). gy stands for the TMI-only estimated hydrometeor
profiles and oy stands for their uncertainties.
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2.2 Using combined sensors (TMI and PR)

In our approach, the development of a new combined precipitation retrieval method to be applied to TRMM
radar and radiometric measurements is achieved by means of a two-step Bayesian approach. As already noted,
TRMM scanning geometry makes any direct use of combined TMI and PR measurements very complex.

As shown in Fig. 2, the algorithm first step is based on TMI data and trained by a cloud-radiation database,
quite analogously to the TMI algorithm shown in Fig. 1. However, here the TMI-retrieved profiles and their
standard deviations are used as a constraint for the second cascade step. The latter is a Bayesian technique as
well, in which the PR measurements and the TMI-based profile estimates are used in conjunction with a cloud-
reflectivity database, that is built from the same cloud model simulations used for the first step. In this
process, the TMI-estimated slanted profiles need to be re-projected along the PR pointing angle. The typical
output is given by the estimates of the precipitation rate profiles at PR ground-resolution and of the
corresponding hydrometeor equivalent water contents.

3.  Characterization of cloud-radiation databases

For the TMI precipitation profile retrieval, the cloud-radiation database consists of a large set (thousands) of
slanted precipitating cloud profiles and of the corresponding brightness temperatures at TMI channels and
resolutions. In the TMI-PR combined precipitation profile retrieval case, on the other hand, an additional
database has to be considered, which consists of vertical precipitating cloud profiles and of the corresponding
PR-reflectivity profiles.

3.1 Cloud-radiation database generation

The precipitating cloud structures are based on the outputs of 3-D numerical mesoscale non-hydrostatic cloud-
resolving models, which explicitly produce the equivalent water contents of six species of hydrometeors
(cloud droplets, raindrops, graupel particles, pristine ice crystals, ice aggregates and snow flakes) as a function
of space and time. No explicit indication on the presence of partially melted hydrometeors is given by the
models we utilize. At present, we make use of two hurricane simulations (hurricane Gilbert and hurricane
Bonnie) generated by the University of Wisconsin - Non-hydrostatic Modeling System (UW-NMS) (Tripoli,
1992), and of a simulation of a tropical squall line observed during TOGA-COARE (hereafter, TOGA
simulation), that has been produced by the Goddard Cumulus Ensemble (GCE) cloud modeling system (Tao
and Soong, 1986).

In the UW-NMS simulations, the hydrometeor size distributions are given by constant-slope inverse
exponential distributions (see Panegrossi et al., 1998; Cotton et al., 1982; Tripoli and Cotton, 1980) with
slopes equal to 1.852 mm™ for rain, 2 mm™ and 1 mm™ for graupel (for hurricane Bonnie and for hurricane
Gilbert, respectively), and 0.3 mm™ for snow and aggregates. Cloud droplets and pristine ice crystals are
monodispersed with diameters equal to 0.02 mm and 0.230 mm, respectively. Hydrometeor density is equal to
0.22 g/cm’® and 0.6 g/cm® for ice crystals and graupel particles, respectively, while for snow and ice aggregates
it varies with size as in Panegrossi et al. (1998). For the GCE model, constant-intercept drop size distributions
are assumed (see Kummerow et al., 1996), with intercepts equal to 8000 m™ mm™ for rain, and 4000 m>mm™
for graupel, snow and aggregates. Graupel density is 0.4 g/cm’, while snow density is 0.1g/cm®. Cloud
droplets and cloud ice are monodispersed with diameters equal to 0.1 mm and 0.02 mm, respectively, and ice
density is 0.9g/cm’.

From the outputs of the cloud models, the upwelling brightness temperatures are computed, and the
corresponding hydrometeor equivalent liquid water content (LWC) profiles are extracted for the cloud-
radiation database. The definition of these cloud profiles, however, is by no means unique, as it will be
explained in Sub-section 3.2.1.
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The simulated TBs are generated by means of a 3D-adjusted plane-parallel radiative transfer (RT) code
(Roberti et al., 1994; Liu et al., 1996; Bauer et al., 1998) at the TMI frequencies and viewing angle (53.1°).
The TBs are computed at model resolution (which is generally much higher than the satellite footprints), and
then filtered in order to reach the TMI effective resolutions for the different channels. At each frequency, the
antenna pattern of the radiometer is simulated by means of a 2-dimensional Gaussian weighting function,
where the half-power beam width equals the footprint at that frequency.

In addition to the hydrometeor LWC profiles, the database contains the corresponding precipitation rate
profiles for both rain and ice (i.e., graupel and snow). At each altitude, the rain/ice precipitation rate is
computed by using the terminal fall velocities given by Flatau et al. (1989) together with the vertical wind
speed, temperature and pressure produced by the cloud model, and the rain/ice size distributions used within
the RT computations — which may be different from those of the cloud model, as explained in Sub-section
3.2.2. It is worth mentioning that the conversion into precipitation rates makes the comparison of TMI
retrievals with radar products almost straightforward.

As an example, Fig. 3 shows, in terms of mean and variance, both the vertical distributions of rain, graupel and
snow, and the total (ice + rain) precipitation rate profile for hurricane Bonnie simulation (minute 2130).

For the purpose of comparing the cloud-model reflectivities with the PR-measured ones, we have found it
convenient to compute the attenuated average reflectivities due to the various layers of the cloud model (see
Sub-section 4.2). The attenuated average reflectivity Zj (in mm® m™) due to the i-th cloud model layer and

observed at the platform altitude is given by (Marzano et al., 1999):
Z; (z=0) = (Zej / 27) [1 - exp(-277)] exp(—27Tio) ey

being 7j the optical thickness of the i-th layer, T,; the optical thickness from the top of the i-th layer to the radar
antenna altitude (z=0), and Zg; the equivalent reflectivity per unit volume (constant within the i-th layer),
which is given by :

4 5 2 =
Zei=A T |K| Jo o, N@dr 2)

where A is the wavelength, K the refractive-index polarizability (JK| is equal to 0.93 for liquid water at 13.8
GHz), o, the back-scattering cross-section and N(r) the particle distribution, with r the particle radius.

Moreover, for each cloud layer, the total path attenuation (a, in dB) has been considered as an additional
predictor:

a = % Ti with i=1,N
(3)where N are the radar range bins. As an example, Fig. 4 shows the simulated reflectivies for
two vertical sections across the hurricane Bonnie simulation, minute 2130.
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Fig 3: Vertical distributions of rain (upper left panel), graupel (upper right), and snow (lower left) water contents,
and of the total precipitation rates (lower right panel) for hurricane Bonnie simulation (minute 2130). Ar each level,
both mean and variance are shown.
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As shown in Fig. 1, the database of the simulated TBs is clustered into two separate classes corresponding to
moderate and intense precipitation regimes. This classification -- which mitigates the ill-conditioning of the
problem and is also useful for speeding up the retrieval -- is unsupervised, i.e. it is based only on the emerging
TBs and their variations, rather than on the model microphysics. We recognize that a stratiform/convective
classification criterion (see, for instance, Anagnostou and Kummerow, 1997; Mohr et al., 1998; Hong et al.,
1999) would probably be a better solution. However, we have found that such criterion is hardly applicable
over slanted profiles of the adopted cloud model simulations, because mixed convective and stratiform
portions often coexist within the same cloud structure.

It is worth mentioning that before performing the retrieval, it is necessary to check the representativeness of
the database for the typology of precipitation event which is under consideration -- i.e., its capability of
reproducing that event from a radiative point of view. On a rigorous basis, the retrieval may be performed
only if the manifold of the measured TBs and/or reflectivities is completely overlapped by that of the
simulations. On the contrary, when the two manifolds are largely different, the precipitation event is not
adequately represented by the database (see Panegrossi et al., 1998) and therefore no retrieval should be
attempted.

Fig. 5 shows, in terms of frequency-dependent scatterplots, a comparison between the measured TBs for
hurricane Bonnie on August 25, 1998, and the simulated ones for the full database (i.e.. generated by means of
all adopted cloud model simulations). Noteworthy, the simulated TBs show a satisfying agreement with the
measurements, especially at the lower frequencies. However, for a few pixels the measured TBs are not
matched by the simulations. This is apparent in Fig. 6, where the TMI pixels for hurricane Bonnie that are
adequately matched by the 8-
dimensional TB-database (i.e., the
TB-distance is below a given

threshold, which we take as 4 K) are m | wul

shown as white points, whereas the z ] m

pixels for which such agreement is e { m}

not found are represented by the red e bazs Bl

points, and the black areas F i ]' ga}[

correspond to not-rainy or over-land :E . :

pixels. By defining a Matching o )

Index (MI) as the percentage of e -y m W s R an
white to white+red pixels, we obtain o R

MI = 99% for Figs. 5 and 6. i 2

It is also interesting to consider ::’ ‘:

which portions of the database are o ?“J'r

used by the algorithm for the §$ >:z

retrieval of different events. For B o

instance, in order to evaluate the 160 10

representativeness of the various :: ::;

cloud model simulations, we Wi e ey e i
associate a Simulation Index (SI) to TBI9V

each retrieved pixel, indicating the

relative weight of the simulations Fig 5: Frequency-dependent scatterplots of the simulated TBs of the
within the retrieval process. For full cloud-radiation database (blue points), and of TMI data for

! or hurricane Bonnie, granule 4267 (cian points).
simplicity, we define SI as the = w R (atigng
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simulation that generates the closest set of TBs with respect to the TMI measurements. We notice, however,
that in the MMS approach - that is used in the present report (see Sub-section 4.1) -- it would be more
appropriate to consider all points of the database that are used by the retrieval algorithm with their
corresponding weights.

Fig. 7 shows the results of this analysis for the Hurricane Bonnie case by using different colors for the
different values of Simulation Index, i.e. for the different simulations that have been selected by the algorithm
for each pixel. It turns out that for the intense core of the cyclone, the algorithm selects cloud structures
provided by the hurricane Bonnie simulation, whereas on the cloud edges the TOGA simulation is preferred.
In summary, for this case 89% of the retrieved profiles are taken from the hurricane Bonnie simulation as
shown in Table I, which gives the
percentages for other case studies as

Database BONNIE GILBERT TOGA . .

well. Interpretation of these results is

Measurements not straightforward because the
Bonnie (Granule 4267) | 89 1 10 simulated upwelling TBs depend not
only on the hydrometeor profiles

Astrid (Granule 11938) | 54 1 45 (which are different for the three
simulations), but also on the different

Atoll (Granule 4176) |0 0 100 beam filling characterization of the
simulations, and on the fact that

Table I: Percentages of the cloud simulation (columns) used for the different values of the wind speed

retrieval of three different case studies (rows), with respect to the

W have been used to compute the sea
total number of rainy pixels.

surface emissivity.

3.2 Cloud-radiation database optimization

From the above statements, it is clear that much attention should be paid on the generation of the database.
Thus, much effort has been devoted to the evaluation of the representativeness of the database for the case
studies under examination and, especially, to the characterization of the errors and/or uncertainties of the
forward model. In this Sub-section, some further refinements and recommendations are given for the database
characterization, together with more details about the database generation.

3.2.1 Profile characterization
A key point of the cloud-radiation database generation concerns the definition of the cloud structures which
have to be associated to the simulated TBs. As described in Sub-section 3.1, the TBs are computed along
slanted columns at model resolution, and then averaged over the simulated scenario according to the size of
the footprints at the various TMI
10GHz | 19GHz | 37 GHz | 85 GHz frequencies. Considering that the
three cloud model simulations have
different horizontal resolutions (2.5
km, 3.3 km, and 1.0 km for
hurricane Bonnie, hurricane Gilbert,

TMI (km) 59x357 | 30x18 | 16x9.7 | 6.9x4.2

Bonnie (#) 24x 14 12x7 6x4 3x2

Gilbert (#) 18x11 | 9x6 5x3 2x1 and TOGA, respectively), a
different number of pixels has been
TOGA (#) 59x36 | 30x18 | 16x10 Tx 4 considered for computing the

averages (see Table ID).
Table 11 : Number of model pixels required to match the TMI ground

. , . Noteworthy, this convolution,
resolutions for the three simulations used to generate the cloud- L
radiation database. which is necessary to reproduce the

330



MUGNAL A. ET AL.: CLOUD-MODEL BASED BAYESIAN TECHNIQUES FOR PRECIPITATION PROFILE RETRIEVAL ...

Longitude

-78 -76 -74 -72 -70 -68 -66
Latitude
TMI resolutions, makes it difficult to uniquely identify the cloud structure to be associated to each set of
simulated TBs, because four different cloud structures -- filling up elliptical cylinders with sizes corresponding
to the cross-track and along-track resolutions of the 10, 19, 37 and 85 GHz frequencies -- are actually

associated to each point of the database.

Fig 6: Hurricane Bonnie on August 25, 1998 (granule 4267). The black points are not-rainy or over land.
The red points are not overlapped by the cloud-radiation database. The white points are overlapped
(within 4 K difference). The Matching Index Ml is 99%.

SIMULATION INDEX
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Fig 7: Simulation Index (SI) for hurricane Bonnie on August 25, 1998 (granule 4267). The blue pixels are
not-rainy or over-land. Cian, brown and yellow identify pixels with SI for hurricane Bonnie, TOGA and
hurricane Gilbert simulations, respectively.

In theory, this problem could be tackled by considering only the cloud structure contained in a deformed
elliptical cylinder, having horizontal sizes that vary with height according to the frequency-dependent
contribution of each cloud layer to the upwelling TBs. This, however, would be rather complex and pixel-
dependent. Therefore, we have decided to use the cloud structure corresponding to the 37 GHz frequency as a
reasonable compromise. This choice is also optimal for the TMI sampling characteristics. In addition, the
retrieval error which is intrinsic to the choice of a unique cloud structure, is accounted for by considering the
variability -- both in terms of cloud profiles and of simulated TBs -- of the 37 GHz inside the footprints of the
19 and 10 GHz, as well as of the 85 GHz inside the 37 GHz footprint.

This discussion evidences that when using a 3-D approach, the performance of the retrieval depends on the
cloud model capability to reproduce the microphysics of the simulated events, as well as their horizontal
patterns and spatial features. Thus, it is necessary to simulate different typologies of events (and, possibly,
several events for each typology) to generate a general database that can be successfully applied to the various
precipitation regimes.

3.2.2  Sensitivity analysis and error budget

Several parameters having a significant degree of uncertainty play an important role in the forward modeling.
In the RT calculations, for instance, assumptions must be made on important parameters that are not
sufficiantly specified within the cloud model. Thus, we have carried out sensitivity tests to evaluate the
impact on the upwelling TBs which is due to parameters that determine the surface emissivity or the single
scattering properties of the hydrometeors. As a result, model covariance matrices have been built in order to
take into account these uncertainties.

The effects, resulting both from our sensitivity tests and from a careful review of the literature, can be
summarized as follows (see also Tassa et al., 2001):

e Particle Size Distributions (PSDs). As pointed out by Panegrossi et al. (1998), the PSDs are one of the
main sources of uncertainty in the simulated brightness temperatures at microwave frequencies. A
flourishing literature exists about the distribution of the various hydrometeors with size. For the rain
drops, for instance, several different models have been proposed -- e.g., inverse-exponential PSDs
(Marshall and Palmer, 1948), Gamma-shaped PSDs (Ulbrich, 1983; Willis and Tattelmann, 1989),
“normalized” PSDs (Testud et al., 2000), among many others --, but none of them has yet received a
general consensus. Also, the spectra seem to be considerably different in stratiform and convective clouds
(Tokai and Short, 1995; Testud et al., 2000). The PSDs of precipitating ice are even more uncertain
(Houze et al., 1979; Sekelsky et al., 1999). In our database, to keep consistency with the cloud model
simulations, we have principally used for both rain and graupel the PSDs specified by the cloud models
themselves: i.e., Marshall-Palmer PSDs characterized by either a constant-slope (Cotton et al., 1982) or by
a constant-intercept (Kummerow et al., 1996). Nevertheless, we have also tested truncated constant—slope
Marshall-Palmer PSDs (in which the particles are supposed not to grow larger than a maximum diameter)
for they allow a better fit with the measurements (Tassa et al., 1999). Finally, the effect of PSD modeling
on the upwelling TBs has been analyzed in detail by randomly varying the value of the slope for constant-
slope PSDs.

e Particle Shapes. In our RT calculations, we have assumed spherical hydrometeors and have therefore
used Mie theory to compute their scattering properties. Non-sphericity generates polarization differences
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characteristics of the particles themselves (Roberti and Kummerow, 1999). We plan to insert values from
the literature into the radiometric-error covariance matrix. .

o Melting Phase. The effects of melting have not been yet considered because the cloud models do not
provide any direct indication on melting ice particles (i.e., on their vertical distribution and melting
fraction). In addition, in the case of stratiform precipitation, an accurate parametenzatlon of the melting
layer would require a vertical resolution higher than that presently ensured by the dynamical models. ThlS
problem has been tackled by Bauer (2000) (see also Bauer et al., OOO) who has found TB increases as
large as 8 K at the lower frequencies (10 and 19 GHz) over ocean. These values could be inserted in the
radiometric-error covariance matrix as well. Sensitivity studies are planned for using the University of
Essex scattering model by melting particles (Walden et al., 1999) into our RT calculations. The insertion
of melting particles is obviously expected to play a major role in the calculation of simulated radar
reflectivities.

o Sea Surface Wind Speed. For the sea-surface emissivity, we have adopted the model developed by the
Université Catholique de Louvain (UCL) (Lemaire, 1998), which is function of surface wind velocity and
rainrate. Even though clouds and precipitation tend to hide the impact of surface characteristics on the
upwelling TBs, this effect can be significant at the lower frequencies in the case of low rainfall rates (we
compute TB differences at 10 GHz that may be as large as about 20 K and 10 K for horizontal and vertical
polarization, respectively, when surface emissivity characteristics are changed). Moreover, at these

- frequencies, pixels at the cloud edges usually contain both cloudy and cloud-free areas, thus enhancing the
impact of surface emissivity. We have carried out sensitivity tests to explore these effects. It turns out
that while the rainfall-induced ring waves have a negligible impact on the upwelling TBs, the effects due
to wind speed may be quite important accounting for most of the computed TB variations. In our studies,
this latter effect is taken into account by randomly varying the wind speed between 5 and 22 m/sec (whlch
'are the extreme values allowed by the UCL model). :

e Radiative transfer approximations. The potential of the slanted-path plane-parallel approximation for
the RT scheme has been deeply investigated (Roberti et al., 1994; Bauer et al., 1998; Kummerow, 1998).
These authors generally agree on the errors being limited to a few K on average scenes, even though the
local values may be important in case of large horizontal gradients (e.g., at the cloud edges) (see Liu et al,,
1996; Czekala et al., 2000). We have compared the upwelling TBs at TMI frequencies and resolutions for
the various cloud model simulations with the corresponding results generated by means of the 3-D Monte
Carlo RT code of Roberti et al. (1994). Differences are usually limited to a few degrees except for the 85
GHz in correspondence of the most intense portions of the simulated storms, where the TBs computed
with the slanted-path plane-parallel RT approximation may be up to about 20 K lower.

3.2.3 Microphysical constraints on cloud models from radiative analysis

We have explored the potential of the UW-NMS cloud model to reproduce the cloud structures of the
simulated events by statistically comparing the computed TBs for the hurricane Bonnie simulation with the
actual TMI measurements. It turns out that the simulated TBs show excessive cooling at 85 and 37GHz and
excessive heating at 10 GHz, which may be due to the combination of several effects, such as a too large
production of rain/ice precipitating hydrometeors by the cloud model -- especially in the most intense portions
of the simulation --, or to its simplified description of the microphysical parameters of the various
hydrometeor species. Based on comparisons carried out using different rain and graupel PSDs to compute the
simulated TBs, the cloud model has been re-run (for a short period) with constant-slope Marshall-Palmer
PSDs having slopes equal to 2.5 mm” for both hydrometeors and with an enhanced graupel density of 0.9
g/cm’. As a result, an appreciable decrease (up to about 10%) of the largest values of both rain and graupel
colummar contents has been observed in the new simulation, which produces a 30% improvement of the MI
value when the simulated TBs are computed with the new PSDs and graupel density.
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These results seem very promising, suggesting that a back-and-forth process of TB calibration/validation may
provide extremely useful information for tuning the bulk microphysics of the mesoscale models.

4. Bayesian estimation methods

Almost all rainfall estimation techniques using microwave measurements present a probabilistic approach due
io the statistical nature of precipitating cloud parameters. Both our TMI and TMI-PR combined retrieval
algorithms (BAMPR-P and BAMPR-C) are based on a Bayesian approach. Here, we will first sketch the
theoretical foundations of the Bayesian method in the case only one sensor is used, then we will describe the
extension of the algorithm to combine TMI and PR data (see also Di Michele et al., 2001a; 2001b). A more
detailed description of the BAMPR implementation, shown Figs. 1 and 2, will be also given.

4.1 Using single sensor (TMI)
Using a vectorial notation, we indicate with g the geophysical (hydrometeor content) vector related to a cloud
profile and with t_ the multispectral vector of TMI measurements.

In the framework of the Bayes estimation theory, a possible optimal estimation is the one which gives the
maximum of the a posteriori conditional probability density function (pdf), p(g|t,); this estimate, g,,,,, is given
by: ' ‘ - '

Suar = Max{p(g|tm)} @)

This represents the Bayesian criterion of the Maximum A posteriori Probability (MAP). From a numerical
point of view, the implementation of (4) imposes the search of a histogram maximum. This algorithmic aspect
can be very sensitive to the sampling and density of cloud structure parameters (and corresponding TBs)
within the cloud-radiation database (Di Michele et al., 2001a).

To overcome these MAP difficulties, in our retrieval scheme we resort to the Bayesian criterion of Minimum
Mean Square (MMS), where the estimate g, is defined as the expected value of g, given a set of
measurements t_; i.e.:

g,s= Mean{p(glt,)} (5)

or, explicitly:

8. =], 8 D(elt,) dg=<(glt,)> 6)

where the angle brackets indicate an ensemble averaging. Moreover, it is also worth noting that the MMS
algorithm can easily furnish a measure of its intrinsic accuracy, since it can be proved that:

& paes = <I(lt,) - <(glt)>T> %)

where ¢° . is the profile estimate variance vector. The MMS algorithm is also referred to as Minimum

sMMS
Variance algorithm because it can be shown that it corresponds to minimize the conditional variance of g

givent .
Using the Bayes theorem, p(glt_) can be transformed in the following way:

p(glt.) = p(t,lg) p(g)/p(t,) = ple(2)] p(g)/p(t,) (®)

where p(g) is the a priori pdf due to g, and g(g) = [t(g) - t,] is the TB error vector with t(g) the simulated TB
vector related to g by means of the adopted radiative transfer model (Pierdicca et al., 1996). Since €, takes into
account not only the radiometric absolute accuracy, but also other possible sources of error due to the forward
modeling, we assume that it is a zero-mean random variable with Gaussian distribution. Thus, Eq. (8)
becomes:
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-In [p(glt N =¢"C_g-In[p@]+ec, S ©)

where C., = C,, ,+C
for matrix transposition, and c, is a constant with respect to g (including the determinant of C D A description

eoma T Ce, mog 18 the covariance matrix of radiometric (rad) and model (mod) TB errors, ©“T” Stalbld’S
of various sources of uncertainties is given in Sub-section 3.2.2, while a description of the unpact of C onthe

retrieval can be found in Di Michele et al. (2001a).

The inversion scheme for BAMPR-P is shown on the left side of Fig. 1. The first step. is a screening phase,
where land and coast pixels are removed, while the rainy ones are selected among the ones xelatiile to the
ocean. The rain/no rain discrimination is based upon the measured TBs using the same method of the TRMM
official products. The second step consists in the identification of the rainfall regime, which is aehieVCd’by
determining if the measured TBs belong to either the moderate or to the intense rainfall class of the cloud-
radiation database. In the third step, the Bayesian MMS inversion algorithm is applied usmg only the selected
class of the cloud-radiation database. Output products are the hydrometeor and/or pre01p1tat10n-rate proﬁles
together with columnar LWCs and surface rain rates. 'The corresponding accuracy values can be computed
according to Eq. (7).

4.2 Using combined sensors (TMI and PR) .

To combine radar and radiometer measurements, the just-described Bayesian technique is extended by
considering the measured reflectivities in the same way than the radiometric measurements (Marzano et al.,
1999). The simulated multi-gate radar reflectivity factors (hereafter, simply reflectivities, Z’s) are indicated by
a vector z (in mm’ m” or dBZ). Each element of z represents the attenuated average reflectivity Zj relative to
the i-th layer (i.e., to the range gate of the cloud model), as it would be observed by the spaée-bome radar. As
explained in previous Sub-section 3.1, z is related to the cloud structure (i.e., to vector g ): thus, it will be
referred to as a function z(g). : :

In order to make the comparison possible, the PR reflectivity measurements have been aVeraged within eaeh
couple of heights defining the various cloud model layers (results will be indicated by the vector zm); Under

the assumption of coincidence between the radiometer and radar beams, we can build a vector of
measurements which is the merging of radiometric and reflectivity data, so that the conditional a posteriori
pdf p(glt ,z ) can be expressed as follows in the combined case:

p(glt,z,2)=[p(t |g)p(z |g) pa ) p(&)] / p(t, 2,2 ) o - (10)

This approach is sometimes referred to as “tall-vector” method (TVM). Note that we consider the total path
attenuation at 13.8 GHz as addition measurement since it can be estimated from surface reference technique
(Meneghini et al., 2000).

4.2.1 Combined retrieval within TRMM: inside the common TMI-PR swath

The TVM is here introduced just as a reference, for its application to TRMM data is cumbersome due to the
different scanning systems of TMI and PR: the TMI is conically scanning at 53° off-nadir, while PR is cross-
track linearly scanning. A way to overcome this difficulty is to separate the combined inversion problem into
two steps in cascade (see Fig. 2). In the first step, a TMI-derived estimation is performed by applying the
BAMPR-P algorithm. In the second step, the PR-based retrieval is carried out assuming the TMI-derived
hydrometeor profile as additional constraint. We will refer to this TMI-PR cascade (TPC) technique as
BAMPR-C.

As already mentioned, the TMI estimated profiles are slanted -- rather than Vertical, as it would be requested
for a TVM coupling with the corresponding PR reflectivity profiles. Since we use a two-step approach, we
can tackle this problem by associating to each PR reflectivity beam several TMI-estimated slanted profiles, by
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taking for each altitude range the corresponding portion of the TMI profile that intersects the PR beam. This
process, however, is carried out only above the freezing level (assumed to be at 4.5 Km in this paper) because
the PR estimates basically benefit only of the TMI information on the ice portion of the precipitating cloud.

Accordmg to this idea, the conditional a posterzorz pdfin the second step can be written as follows:
p(gle,,z,2)=Ip(z le)p(|g) @ lg) p(g)]/p(g 2 2) (11)

where g, and g, are the combined PR-TMI.estimate and the TMI estimate, respectively (note that the latter
was indicated as 2 s in Sub-section 4.1). By comparing Eqgs. (10) and (11), it emerges that g (which is

obtained from t ) replaces t itself as the radiometer-derived information to the measurement set.

4.2.2 Combined retrieval within TRMM: radar-swath synthetic broadening

TMI has a much larger swath than PR (760 km vs. 220 km). This raises a new intriguing issue in the
synergetic retrieval methodology -- i.e., it becomes important to see if it is possible to synthetically "broaden”
the PR swath in order to achieve an estimation accuracy fairly uniform across the TMI swath. In our
approach, this is achieved by the addition of the physical information derived from PR to the cloud-model
database to be used outside the swath (where only TMI is available), capitalizing on the combined radar-
radiometer observations within the common swath. Specifically, a PR-calibration of the emerging TBs
associated to each profile of the cloud-radiation database is performed inside the common swath by means of a
new combined cascade — which we call PR-TMI cascade (PTC) phase of the technique --, in which the two
steps described in the previous Sub-section 4.2.1 are reversed. Then, the PR-calibration is extended to all
profiles of the database. Finally, the BAMPR-P algorithm is applied to the TMI observations outside the
common swath using the PR-calibrated database.

In the PTC phase, the PR-based estimation is used as a constraint for the TMI-based retrieval. This choice has
the advantage to give a product which is compatible with the one obtained by using the BAMPR-P algorithm.
Thus, we can directly compare the TBs associated to the hydrometeor profiles g, estimated by the PTC phase

(which we call t(gm) ) and t(gm), i.e. the TBs corresponding to the hydrometeor profiles g, estimated by
BAMPR-P. Their difference At

At=t(g, )-t(g ) (12)

PTC

is due to the additional information derived from PR measurements in the common swath. The differences At
can be used to build a regression-based relationship linking them to corresponding TMI measurements; i.e.:

At=Dt (13)
where D is the regression coefficient matrix. This means that we can “calibrate” the simulated TBs as follows:
t (8) =t(g) +D1(g) (14)

As a consequence, outside the common swath we replace the simulated t(g) with tm(g) given by Eq. (14).

Noteworthy, this technique resembles that one described by Marzano et al. (1999) for a TVM approach.
Obviously, this PR-calibration is reasonable only when the TB-pattern is homogeneous across the TMI swath.
Thus, a pattern recognition method should be used in conjunction with this technique.

According to the Bayes theorem and similarly to Egs. (8) and (11), the swath-broadening retrieved profile g,

has to satisfy the following a posteriori pdf expression:
P(gpltn) = [P(t,l2es) P(Ee)] / P(L,) = [P(E,,) P(Esp)] / P(L,) (15)
where the “calibrated” model error € is:
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According to the Bayes theorem and similarly to Egs. (8) and (11), the swath-broadening retrieved profile g,

has to satisfy the following a posteriori pdf expression:

p(gslte) = [P(t, |&) P(gs)] / P(t,) = [PE,,) P(gsy)] / P(t,) (15)

where the ‘“calibrated” model error € _, is:

teal ~o "
Elcai . tm P tcal{g) (1 6)

Eg. (15) represents the extension of Eq. (8) in the case of the swath broadening performed by using a PR-
calibration approach for the cloud-radiation database. This technique has been numerically tested on synthetic
data, but not yet applied to TRMM measurements. Results will be shown in a forthcoming paper (Di Michele
et al., 2001b).

5. Applications to TRMM data
Extensive production of data has been made in the context of the EuroTRMM project, for the following sets of
selected cases:

e Hurricane Bonnie (Atlantic Ocean — August 24-26, 1998)
e Hurricane Astrid (Atlantic Ocean — December 24-31, 1999)
¢ Wide-spread convective cases over the Atoll region (Pacific Ocean — August 8-September 4, 1998).

In what follows, we will focus on the TMI granule 4267 of August 25, 1998, when TRMM passed over
hurricane Bonnie in the most intense period of the cyclone evolution. This case provided the best results when
compared to the PR measurements, while the largest differences have been observed for the Atoll cases.

Fig. 8 shows the TMI images of hurricane Bonnie (granule 4267) at 10, 19, 37 and 85GHz, vertical
polarization. The nadir cross-section of the measured TBs is shown in Fig. 9 together with the measured PR
reflectivities. It is apparent that the observed scene is fairly composite, with a strong updraft embedded within
a large stratiform region around 600 km in the along-track direction.
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Fig 8 Hurricane Bonnie as seen from TMI on August 25, 1998 (granule 4267) at 10 GHz (upper left
panel), 19 GHz (upper right), 37 GHz (lower left) and 85 GHz (lower right). Vertical polarization.
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This case is really peculiar because of the very pronounced tilting of the convective tower, evidenced by the
10 km shift between the corresponding PR reflectivity peak and the TB deep minimum at 85GHz (see Hong et
al., 2000 for more details on this event). Noteworthy, also the various TMI measurements at the different
frequencies are shifted with respect to each other.

5.1 Using single sensor (TMI)

The upper panel of Fig. 10 shows the surface rain rates estimated with our algorithm BAMPR-P for the nadir
section of hurricane Bonnie that has been shown in Fig. 9. Results are shown together with the estimation
uncertainties, and compared with the official TRMM estimates for TMI (2A12 product). A systematic
overestimation of the 2A12 with respect to BAMPR-P is evident. In addition, there is a slight displacement of
the rainfall peak around 600 Km, which seems to be associated to the shift between the measured TBs, that has
been pointed out in Fig. 9. While the 2A12 estimates appear to be more related to the 85 GHz measurements,
the BAMPR-P estimates are more related to the lower frequencies. In the lower panel of Fig. 10, our estimates
are shown together with the corresponding PR product (2A25). The shift of the rain rate peak is well evident
as a consequence of the tilting described above. While the rainfall rate produced by the convective tower is
severely underestimated by BAMPR-P and the rainfall appear to be distributed over a larger area -- a
discrepancy that reflects the different resolution of the two estimates: 4 by 4 Km for 2A25, and 13 by 15 Km
for BAMPR-P --, a very good agreement can be appreciated in the stratiform regions in spite of the different
geometry and resolutions of the PR and TMI observations.
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Figure 9: TMI brightness temperatures (upper panel) and PR measured reflectivities (lower panel) along
the central scan for hurricane Bonnie on August 25, 1998 (granule 4267).
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Fig 10: BAMPR-P surface rainfall rate estimates (mean and variance), together with 2A12 estimates
(upper panel) and with 2A25 estimates (the lower panel), along the central scan of hurricane Bonnie on
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Fig 11: BAMPR-P rain precipitation-rate estimates (blue line: mean and variance) for the layers (from
bottom to top) 2.5 - 4 km, 4 - 5.5 km, and 5.5 - 7 km. In each panel, the cian line corresponds to the 2A25
estimate, while the dashed line refers to the BAMPR-P total (rain + ice) precipitation-rate estimate.
Differently to most passive-microwave rainfall algorithms, BAMPR-P estimates the precipitation rate profiles
in addition to the surface rainfall rate. Thus, comparison with 2A25 products has been performed at higher
altitudes as well. To this end, the precipitation rate profiles estimated with both 2A25 and BAMPR-P have
been vertically averaged into five layers (0 — 2.5 km; 2.5 - 4.0 km; 4.0 - 5.5 km; 5.5 - 7 km; and above 7 km).
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The three panels of Fig. 11 show the results for the three mid-layers. The most striking feature of this figure is
that our estimates for the rain precipitation rates agree very well at all altitudes with the corresponding PR
measurements. The total (rain + ice) precipitation rates, on the other hand, tend to overestimate the 2A25
products.

Finally, Fig. 12 shows the normalized uncertainties of the surface rainfall rates estimated by BAMPR-P for
three TRMM overpasses during the three case studies that have been mentioned above. It is evident that in all
cases, the uncertainties are very large for the light rainfall rates, but tend to rapidly decrease as rain rate
increases, converging towards a regime value of about 50% for the most intense pixels. We intend to explore
ways to reduce these uncertainties. In our opinion, this may be achieved by improving the cloud-radiation
database: for instance, by means of an improved classification of the database itself or by implementing a sort
of swath broadening. This latter basically consists in transporting outside the TMI-PR common swath
information derived from the common swath itself (for instance, by associating a different probability to the
cloud structures of the cloud-radiation database, depending on their occurrence within the combined TMI-PR
retrievals).

= TMI Granule: 11538 (Hurricane Astrid)
TMI Granule: 4267 (Hurricane Bonnie)
+  TMI Granule: 4176  (Atoll Case) 3

Lo}

Nomalized Uncertainty on Surface Rainfal Rate Estimates

i L g i i
30 a5 40 45 S0
Surface Rain Rate (mm'h)

Fig 12: Rainfall-rate normalized uncertainties of BAMPR-P algorithm vs. surface rain rate estimates, for
TMI observations of hurricane Bonnie, hurricane Astrid, and Atolls case.

5.2 Using combined sensors (TMI and PR)

Results of the combined technique for the same case study are shown in Figs. 13 and 14. Fig. 13 shows a
comparison among three different algorithms: the two-step PR-TMI combined algorithm BAMPR-C. the TMI-
only algorithm BAMPR-P, and a PR-only algorithm referred to as BAMPR-A. The retrieved ice columnar
content is plotted in the upper panel, which evidences that the addition of ice content information from TMI
drives the PR-only retrievals towards the TMI estimates. This, however, is less true for the surface rain rate
retrievals shown in the lower panel since the combined retrieval is less sensitive to surface rain rate
information provided by the TMI. In this case, the main effect of adding TMI information is to reduce the
high peaks that are present in the PR-only retrievals.
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Fig 13: Comparison of the columnar ice (upper panel) and surface rain rate (lower panel) estimates
performed using our TMI-only (dotted line), PR-only (dashed line), and combined TMI-PR algorithms
along the central scan of hurricane Bonnie on August 25, 1998.
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Fig 14: Comparison of BAMPR-C and 2425 vertically-avéraged rain and ice precipitation rates. Rain
precipitation rates refer to the 2.5 — 5.0 km layer (lower panel) and ice precipitation rates to the 5.0 - 7.0
km layer (upper panel).
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Fig. 14 shows an intercomparison between the two-step PR-TMI combined algorithm BAMPR-C and the
official PR algorithm (2A25) (Iguchi et al., 2000). Vertically averaged results are shown for two layers (2.5 -
4.0 km; 5.5 - 7 km). It is evident that BAMPR-C overestimates 2A25 at almost every pixel. If we compare
these results with the corresponding ones of Fig. 11, we see that while the combined algorithm BAMPR-C
captures better both the convective peak and the ripple structure that are present in the 2A25 retrieval, the
TMI-only retrieval BAMPR-P is (considerably) closer to the official product in the stratiform regions. In our
opinion, the worse performance of the combined algorithm in the stratiform portions of the observed system is
related to the fact that no bright band has been modeled within our cloud-radiation database. Thus, we plan to
insert melting particles in the simulations to obtain reflectivity profiles that are closer to the observed ones.

6. Conclusions

The methodological features of a Bayesian inversion method (BAMPR), trained by 3-D cloud-resolving
models combined with 3-D radiative transfer models, have been extensively investigated. Microphysical and
radiative aspects of the forward problem have been discussed by stressing the implications of modeling
assumptions upon the retrieval algorithm expected accuracy. The BAMPR algorithm has been applied and
tested over several TRMM cases. In particular, the case of the hurricane Bonnie on August 25, 1998 has been
analyzed in detail by comparing our results with the official TRMM products. Generally, precipitation rates
estimated with BAMPR algorithm for TMI measurements only (BAMPR-P) tend to be in good agreement
with PR official products, however, surface rainfall rates are usually lower than those estimated by the TMI
official algorithm. The TMI-PR combined algorithm (BAMPR-C), on the other hand, does not perform well
in the stratiform regions due to the lack of a melting layer within our RT simulations.
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