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Summary: The semi-Lagrangian method is reviewed for a hierarchy of applications (passive
advection, forced advection and coupled sets of equations) of increasing complexity in one, two
and three dimensions.

1. INTRODUCTION

Accurate and timely forecasts of weather elements are of great importance to both public safety and to the world
economy. The accuracy of computer-generated weather forecasts depends among other things on model
resolution. Increased resolution, given the real-time constraints, can only be achieved by combining the most
efficient numerical methods on the most powerful computers with the most appropriate programming

techniques.

A longstanding problem in the integration of Numerical Weather Prediction (NWP) models is that the maximum
permissible timestep has been governed by considerations of stability rather than accuracy. For the integration
to be stable, the timestep has to be so small that the time truncation error is much smaller than the spatial
truncation error, and it is therefore necessary to perform many ‘more timesteps than would otherwise be the case.
The choice of time integration scheme is therefore of crucial importance when designing an efficient atmospheric
model. Early NWP models used an explicit leapfrog scheme, whose timestep is limited by the propagation
speed of gravitational oscillations. By treating the linear terms responsible for these oscillations in an implicit
manner, it is possible to lengthen the timestep by several factors, at little additional cost and without degrading
the accuracy of the solution (e.g. Robert, 1969; Robert et al., 1972). Such a scheme is termed semi-implicit.
Nevertheless, the maximum stable timestep still remains much smaller than seems necessary from considerations
of accuracy alone (Robert, 1981).

Discretisation schemes based on a semi-Lagrangian treatment of advection have elicited considerable interest in
the past decade for the efficient integration of atmospheric models, since they offer the promise of allowing
larger timesteps (with no loss of accuracy) than Eulerian-based advection schemes (whose timestep length is
overly limited by considerations of stability). To achieve this end it is essential to associate a semi-Lagrangian
treatment of advection with a sufficiently-stable treatment of the terms responsible for the propagation of
gravitational oscillations. By associating a semi-Lagrangian treatment of advection with a semi-implicit
treatment of gravitational oscillations, Robert (1981, 1982) demonstrated a further significant increase in the
maximum stable timestep, at the cost of performing some upstream interpolations. This idea was demonstrated
in the context of a three-time-level shallow-water finite-difference model in Cartesian geometry, and resulted in

the time truncation errors finally being of the same order as the spatial ones.

Since Robert's seminal papers, the semi-Lagrangian methodology for advection-dominated fluid flow problems
has been extended in several important ways and is now widely used. The purpose of this paper is to
summarise the fundamentals of semi-Lagrangian advection (Section 2), to describe its application to coupled sets

of equations (Section 3), and to summarise some of the early extensions of the method (Section 4).
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2. SEMI- LAGRANGIAN ADVECTION

In an Eulerian advection scheme an observer watches the world evolve around him at a fixed geographical
point. Such schemes work well on regﬁlar meshes (facilitating vectorisation and parallelisation of the resulting
code), but often lead to overly-restrictive timesteps due to considerations of computational stability. In a
Lagrangian advection scheme an observer watches the world evolve around him as he travels with a fluid
particle. Such schemes can often use much larger timesteps than Eulerian ones, but have the disadvantage that
an initially regularly-spaced set of particles will generally evolve to a highly-irregularly-spaced set at later times,
and important features of the flow may consequently not be well represented. The idea behind semi-Lagrangian
advection schemes is to try to get the best of both worlds: the regular resolution of Eulerian schemes and the
enhanced stability of Lagrangian ones. This is achieved by using a different set of particles at each timestep, the
set of particles being chosen such that they arrive exactly at the points of a regular Cartesian mesh at the end of

the timestep. This idea evolved from pioneering work of the fifties and sixties (Staniforth and C6té, 1991).

2.1 Passive advection in 1-d

Consider the 1-d advection equation

dF oF  dxdF
— =0, ' 1
dr 5‘t o ar dt B3 W
where 4
% —U(x,1), , @

and U(x,1)is a given function. Eq. (1) states that the scalar F is constant along a fluid bath (or trajectory or

characteristic).
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Fig. 1: Schematic for 3-time-level advection. Actual (solid curve) and approximated (dashed line) trajectories
that arrive at meshpoint x,, at time z, + Az, Here «r, is the distance the parflcle is displaced m x in
time At.

In Fig. 1, the exact trajectory in the (x-) plane of the fluid particle that arrives at meshpoint x,, at time ?, + At

is denoted by the solid curve AC, and an approxtmate stralght-hne trajectory by the dashed line A'C. Assume

that F (x,t) is known at all meshpoints x,, at times #, — At and ?,, and that we wish to obtain values at the
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same meshpoints at time #, + Af. The essence of semi-Lagrangian advection is to approximately integrate (1)

along the approximated fluid trajectory A'C. Thus

F(x,.t, + At)— F(x, - 2a,,.t, — At)
2At

=0, ()

where ¢, is the distance BD the particle travels in x in time At, when following the approximated space-time
trajectory A'C. Thus if we know «,,, then the value of F at the arrival point x,, attime #, + At is just its value
at the upstream point x,, — 20, attime ¢, — Az. However ¢, is not as yet determined : even if it were, F is

only known at meshpoints, and generally it still remains to evaluate it somewhere between meshpoints.

To determine «,,, note that U evaluated at the point B of Fig. 1 is just the inverse of the slope of the straight line
A'C, and this leads to the following O(At”)approximation to (2) (Robert, 1981):

a, = AtU(x, - o,,.1,). @)
Eq. (4) may be iteratively solved for the displacement ¢, , for example by
o™ = MU (x, - al,1,), ’ G)

with some initial guess for af,f’ ), provided U can be evaluated between meshpoints. To evaluate F and U

between meshpoints, spatial interpolation is used. The semi-Lagrangian algorithm for passive advection in 1-d

in summary is thus:

® Solve (5) iteratively for the displacements ¢,, for all meshpoints x,, using some initial guess (usually
its value at the previous timestep), and an interpolation formula.

(i1) Evaluate F' at upstream points x, — 20, attime ¢, — At using an interpolation formula.

(iii) Evaluate F at arrival points x,, attime f, + At using (3).

We defer the discussion of interpolation details to Section 2.4, and first generalise the above three-time-level

algorithm to forced advection in several space dimensions (Section 2.2), and to two time levels (Section 2.3).

2.2 Forced advection in multi-dimensions

Consider the forced advection problem

% +G(x,t) = R(x,1), , 6

where
§=%E+V(x,t)-VF, @
idxt—:V(x,t), ®)

X is the position vector (in 1-, 2- or 3-d), V is the gradient operator, and G and R are forcing terms. A semi-

Lagrangian approximation to (6) and (8) is then:
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Ff—F 1 -
——+-[G"+G|=F, - ©)
2At 2
o= AtV(x - o, 1), (10)

where the superscripts "+", "0" and "-" respectively denote evaluation at the arrival point (x,z+ At), the
midpoint of the trajectory (x - &,¢) and the departure point (x - 20;,¢ — Az). Here, X is now an arbitrary point
of a regular (1-, 2- or 3-d) mesh. ' '

The above is a centered O(Atz) approximation to (6) and (8), where G is evaluated as the time average of its
values at the endpoints of the trajectory, and R is evaluated at the midpoint of the trajectory. The trajectories are
calculated by iteratively solving (10) for the vector displacements ¢ in a manner analogous to the 1-d case for
passive advection [eq. (5)]. If G is known (we assume that R is known since it involves evaluation at time ?),

then the algorithm proceeds in an analogous manner to the 1-d passive advection one and is thus:

) Solve (10) iteratiirely for the vector displacements o for all meshpoints X, usihg some initial guess
(usually its value at the previous timestep), and an interpolation formula.
(iD) Evaluate F — AtG at upstream points x - 2¢¢ at time ¢ — At using an interpolation formula. Evaluate

2AtR at the midpoints x - ¢ of the trajectories at time ¢ using an interpolation formula.

(iii)  Evaluate F at arrival points x attime f+ Af using

F(x,t+At)=(F - AtG + 2R} 4~ MGl o

)I(x-2a,t—At) . (9!)
=(F - AtG) +2AtR’ — AtG". :
If G is not known at time f+ At (for instance if it involves another dependent variable in a set of coupled

equations), then this leads to a coupling to other equations (more on this in Section 3).

2.3 Two-time-level advection schemes

Present semi-Lagrangian schemes are ﬁsually based on discretisation over either two or three time levels. Thus
far we have restricted our attention to three-time-level schemes. The principal advantage of two-time-level
schemes over three-time-level ones is that they are potentially twice as fast. This is because three-time-level
schemes require timesteps half the size of two-time-level ones for the same level of time truncation error
(Temperton and Staniforth , 1987). It is however important to maintain second-order accuracy in time in order
to reap the full benefits of a two-time-level scheme (since enhanced stability with large timesteps is of no benefit
if it is achieved at the expense of diminished accuracy). Early two-time-level schemes for NWP models
unfortunately suffered from this deficiency. The crucial issue is how to efficiently determine the trajectories to at
least second-order accuracy in time (Staniforth and Pudykiewicz, 1985; McDonald, 1987).

This problem arises in the context of self-advection of momentum. To see this we reexamine the algorithm of
Section 2.1 for 1-d advection. Provided U is known at time ¢,, independently of F at the same time, then it
is possible to evaluate the trajectory, and then leapfrog the value of F from time f, — At to ¢, + Ar without
knowing any value of F attime #,. Proceeding in this way, F (tn + 3At) is then obtained using values of

F (tn + At) and U (tn + 2At). Thus we have two decoupled independent integrations, one using values of F at
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even timesteps and U at odd timesteps, the other using values of F at odd timesteps and U at even timesteps.
Either of these two independent solutions is sufficient, thus halving the computational cost, and we obtain a
two-time-level scheme (for the advected quantity F) by merely relabelling time levels t,—At, t, and t, + At
respectively as f,, ¢, + At/2 and £, + At (see Fig. 2). Note that values of U (assumed known) only appear at
time level #, + Az/2, and they are solely used to estimate the trajectories. This is the essence of the 2-d
advection-diffusion algorithm described and analysed in Pudykiewicz and Staniforth (1984).

tA

t ,+At 4+

A2+

t, =+
)X

Fig.2: Schematic for 2-time-level advection. Actual (solid curve) and approximated (dashed line) tra_]ectones
that arrive at meshpoint x,, attime #, +Ar. Here o, is the distance the particle is displaced in x in
time Atf.

Returning to the problem of self-advection of momentum, the above argument breaks down in the spec1a1 case
where F=U in(1)or F =V in (6), ie. when the transported quantity U or V is advected by itself, as is the
case for the momentum equations of fluid-dynamic problems in general, and NWP models in particular. This
problem was addressed simultaneously and independently by Temperton and Staniforth (1987) and McDonald
and Bates (1987), opening the way towards stable and accurate two—time-levél schemes. The key idea here is to
time-extrapolate the winds [with an O(Atz)-accurate extrapolator] to time-level ¢+ Az/2 using the known
winds at time levels ¢ and 7 — Az these winds are then used to obtain sufficiently-accurate [ O(Atz)] estimates
of the trajectories, which in turn are used to advance the dependent variables from time level ¢ to 7+ A¢. Thus
the two-time-level algorithm to solve (6)-(8), analogous to the three-time-level one given by (9)-(10), is (see
Fig. 2)

F'— FO 1 -+ 0 1/2 |
i = R"%, 1
TS [G*+G°] 11
where
o= AV (x - 02,1+ At]2), (12)
V(%1 + At/2) = (3/2)V(x, 1)~ (/2)V(x,t - Ar) + O(AF), 13)
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the superscripts "+", "1/2" and "0" now respectively denote evaluation at the arrival point (x,7+ At), the
midpoint of the trajectory (x - 0t/2,¢+ At/ 2) and the departure point (x - @,f), and o is still the distance the
fluid particle is displaced in time At.

In the above formulation the evaluation of R*? involves extrapolated quantities and therefore could potentially
lead to instability. Temperton and Staniforth (1987) didn't find this to be a problem when some weak nonlinear
metric effects were evaluated in this way in a shallow-water model integrated on a polar-stereographic
projection. However it is preferable to evaluate all non-advective terms (i.e. G in the above) as time averages
along the trajectory whenever possible. Subsequently C6té (1988) showed how to avoid evaluating the above-

mentioned metric terms in terms of extrapolated quantities.

Temperton and Staniforth (1987) examined several alternative ways of extrapolating quaﬁtities for the purpose
of estimating trajectories. They found that those methods which keep a particle on its exact trajectory for solid-
body rotation give better results for the more general problem than those that do not. They also found that time
extrapolating winds along the trajectory (their method 4) is less accurate than time extrapolating winds at

meshpoints as in (13).

2.4 Interpolation ;

A priori any interpolation could be used to evaluate F and U (or V) between meshpoints in the above algorithm.
In practice the choice of interpolation formula has an important impact on the accuracy and efficiency of the
method. Various polynomial interpolations have been tried including: linear; quadratic Lagrange; cubic

Lagrange; cubic spline; and quintic Lagrange.

For step (ii) of the algorithm, it is found (for analysis‘see e.g.: Purnell, 1976; Bates and McDonald, 1982,
McDonald, 1984; and Pudykiewicz and Staniforth, 1984) that cubic interpolation is a good compromise between
accuracy and cdmputational cost. While quadratic Lagrange interpolation is viable and was used in most of the
early studies, cubic interpolation has subsequently been widely adopted. Cubic interpolation is 4th-order
accurate and has very little damping (it is scale selective, with the damping affecting primarily the smallest
scales), whereas linear interpolation (see McDohald, 1984, for discussion) has unacceptably-large damping (it is
aiso ‘s‘,cal‘e selective, but has a much less sharp response). Purser and Leslie (1988) recommend using at least

4th-order (i.e. cubic) interpolation.

Improving the order of the inferpolation formally increases the accuracy, but at additional cost, and the law of
diminishing returns ultimately applies. However this is mitigated, particularly in 3-d, by the use of cascade
interpolation. Cascade interpolation (Purser and Leslie, 1991) employs a sequence of 1-d interpolations to
perform high-order interpolation in multi-dimensions, and uses two intersecting meshes, a regular Eulerian
mesh and a curvilinear Lagrangian mesh. A typical tensor product interpolation in 3d, based on the classical 1-d
Lagrange interpolator, requires O(p?) operations per gridpoint per field, where p is the formal accuracy of the
interpolator. By successively interpolating the da{ta between the Eulerian and Lagrangian meshes, this can be

reduced to only O(p) operations at the cost of determining a set of mesh-intersection points. As originally
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proposed this overhead was quite expensive, but recently Nair et al. (1999) have shown how to significantly

reduce it.

For step (i), the order of the interpolation is much less important (McDonald, 1987). It is found in practice (e.g.
Staniforth and Pudykiewicz, 1985; Bates et al., 1990) that it is sufficient to use linear interpolation for the
computation of the displacements, when using cubic interpolation for F, which is very economical. It is also
found that there is usually no advantage in using more than two iterations for solving the displacement equation
[step (1)]. McDonald (1987) has shown theoretically that it is not necessary to use the same order of
interpolation for each iteration. For example, it is more economical and no less accurate to perform the first

iteration using linear interpolation and the second using quadratic, than to use quadratic interpolation for both.

Pudykiewicz et al. (1985) have shown that a sufficient condition for convergence of the iterative solution of step
(i) is that At be smaller than the reciprocal of the maximum absolute value of the wind shear in any coordinate

—1
whbibl) ]

for 2-d flow, where u and v are the two wind components. This means that the timestep of semi-Lagrangian

direction. Thus

At <[ max( qul,

schemes is not only limited by accuracy considerations (i.e. temporal discretisation errors) but also by properties

of the flow (i.e. wind shear). However for many advection-dominated flows this is not a problem.

Although most authors have adopted polynomial schemes for the interpolatory steps of semi-Lagrangian
schemes, other interpolators are also possible (e.g. Williamson and Rasch, 1989; Nair et al., 1999). The
principal challenge with the shape-preserving and monotonic approaches appears to be to decide how to
precisely determine the required attributes of the interpolator, and how to tailor it to respect them, since there is

no universal best choice.

2.5 Stability and accuracy
Analyses of the stability properties of the semi-Lagrangian advection scheme (e.g. Bates and McDonald, 1982,
McDonald, 1984; Pudykiewicz and Staniforth, 1984) show that the maximum timestep is not limited by the

maximum wind speed, as is the case for explicit Eulerian advection schemes, and consequently it is possible to

stably integrate with Courant numbers ( C = U At/ Ax) that far exceed unity.

In general it is found that semi-Lagrangian advection is competitive with Eulerian advection with respect to
accuracy, but it has the added advantage that this accuracy can be achieved at less computational cost, since
models can be integrated stably with timesteps that far exceed the maximum-possible timesteps of Eulerian
schemes. The aforementioned stability analyses show that semi-Lagrangian advection schemes have very good
phase speeds with little numerical dispersion, but contrary to some Eulerian schemes (e.g. leapfrog-based
schemes) there is some damping due to interpolation as discussed in Section 2.4. This damping is fortunately
very scale selective (at least when using high-order interpolators). McCalpin (1988) has theoretically compared
this damping with more traditional forms such as Laplacian and biharmonic dissipation, and derived some

criteria to ensure that the damping due to semi-Lagrangian advection is less than that due to the more traditional

forms.
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Semi-Lagrangian advection is intimately connected with other advection methods that have appeared in the
literature over the years, including particle-in-cell (e.g. Raviart, 1985) and characteristic Galerkin (e.g. Morton,
1985) methods. Indeed for uniform advection in 1-d, the simplest semi-Lagrangian advection scheme (using
linear interpolation, and not recommended) is equivalent to both classical upwinding and to the simplest
characteristic Galerkin method; and semi-Lagrangian advection using cubic-spline interpolation is equivalent to
the higher-order characteristic Galerkin methods of ‘Morton (1985) and also to a particle-in-cell method described
in Eastwood (1987).

Several well-known Eulerian methods can also be interpreted as being special cases of semi-Lagrangian ones.
Thus the Lax and Wendroff (1960), Takacs (1985) 3rd-order, and Tremback et al. (1987) schemes are
respectively equivalent for 1-d uniform advection to semi-Lagrangian schemes with quadratic-Lagrange, cubic-
Lagrange and n-th-order-Lagrange interpolation. Note however that these Eulerian methods are restricted to

Courant numbers less than unity and are consequently less general than their semi-Lagrangian counterparts.

Although the semi-Lagrangian method is equivalent for uniform 1-d advection to several other methods, what
distinguishes it from other methods is that it generalizes differently to non-uniform advection in multi-
dimensions. The principal difference is the use of (10), introduced in Robert (1981), for the trajectory
calculations. Of particular yimportance is that the approximation of the trajectory equation (8) is
O(Atz)accurate. It is possible to use a simpler, and cheaper, O(At) accurate method to approximate the
displacement equation (8) but this can dramatically deteriorate the accuracy of the scheme, as shown by
Staniforth and Pudykiewicz (1985) and Temperton and Staniforth (1987), and analysed by McDonald (1987).

Consequently most semi-Lagrangian schemes use an O(A#* ) method for discretising the trajectory equation.
q y grang g 3] q

3. APPLICATION TO COUPLED SETS OF EQUATIONS
To illustrate how semi-Lagrangian advection can be advantagously used to solve coupled systems of equations,

we describe its application to the discretisation of the shallow-water equations

du

—+¢ —fV=0, 14
7 o.—fV . (14)
dv

—+¢ +fU=0, 15
— O+ U as)
dln¢+Ux+Vv=0, (16)
dt ’

where U and V are the wind components, ¢ (=gz) is the geopotential height (i.e. height multiplied by g) of the

free surface of the fluid above a flat bottom, and f is the Coriolis parameter.

These equations are often used in NWP to test new numerical methods, since they are a 2-d prototype of the 3-d
equations that govern atmospheric motions. They share several important properties with their progenitor. A
linearisation of the equations reveals that there are two basic kinds of associated motion: slow-moving Rossby
modes (which most affect the large-scale weather motions and, to leading order, move at the local wind speed)
and small-amplitude fast-moving gravitational oscillations (which are inadequately represented at initial time due

to the paucity of the observational network). From a numerical standpoint this has the important implication that
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the timestep of an explicit Eulerian scheme (e.g. leapfrog) is limited by the speed of the fastest-moving gravity
mode. Since for atmospheric motions this speed is much faster than those associated with the Rossby modes
that govern the weather, this leads to timesteps that are much shorter than those associated with an explicit
treatment of advection. A time-implicit treatment of the pressure-gradient term of the vector momentum equation
[2nd terms of (14) and (15)] and horizontal divergence of the continuity equation [2nd and 3rd terms of (16)],
introduced in Robert (1969) and termed the semi-implicit scheme, allows stable integrations with no loss of
accuracy using timesteps that are much longer than that of the leapfrog scheme. The price to be paid for this
increase in timestep length is the need to solve an elliptic-boundary-value problem once per timestep:
nevertheless this improves efficiency by approximately several factors. Analysis shows that the maximum -

possible timestep length is then limited by the Eulerian treatment of advection.

Early applications of semi-Lagrangian advection to coupled sets of equations (e.g. Knshnamurtl 1962, 1969;

Mathur, 1970, 1974) did not take advantage of the enhanced stability properties of the method, since the models
were formulated in such a way that they were not, in the terminology of Bates and McDonald (1982), "multiply
upstream" and so the Courant number (associated with the treatment of advection) was always less than unity.
Nevertheless these studies did demonstrate that semi-Lagrangian advection is an acceptably-accurate method for
advection. Robert (1981, 1982) reasoned that since semi-Lagrangian advection is stable for Courant numbers
significantly larger than unity, it should be possible to associate a semi-Lagrangian treatment of advection with a
semi-implicit treatment of the térms responsible for gravitational oscillations. This was done in the context of a
three-time-level scheme. A stability analysis was given to demonstrate that this scheme should be stable with
timesteps that exceed those of the gravitational, advective and inertial limits, and this was verified in sample

integrations.

To illustrate the application of the semi-Lagrangian method we discretise the shallow-water equations using a
two-time-level semi-implicit semi-Lagrangian scheme, which permits a further doubling of efficiency with
respect to the Robert (1982) algorithm at no extra cost. For simplicity we describe the scheme in plane
geometry. It is then formally equivalent to that of Temperton and Staniforth (1987) with the map-scale factor set
to unity. In spherical geometry the discretisation is a little more complicated due to the appearance of metric
terms in the momentum equations. These can be trivially absorbed into the formulation given below, using
either the approach of Ritchie (1988) or that of C6té (1988) and Bates et al. (1990). Thus

770 + 0 N o
Bl () (V)] =0, an
-V ot +o° + 0
8 oy (=, v
00”8 ) (o, 4]0 *

where (14)-(16) have been discretised using (11) with R set to zero. Here advection terms are treated as time -
differences along the trajectories and all other terms are treated as time-averages along the trajectories, leading to

an O(Atz)-accurate scheme. Where traditional (three-time-level) semi-implicit time discretisations have an
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explicit time-treatment of the Coriolis terms, the above discretisation employs a time-implicit treatment (as in
Robert, 1982) in order to achieve an O(Atz)-accurate scheme: note that explicitly evaluating these terms at time
t would not only reduce the accuracy to O(At) but would also lead to instability. The trajectories are computed

using the discretised equations (12)-(13) introduced by Temperton and Staniforth (1987) and McDonald and
Bates (1987).

For the 1-d shallow-water equations it can be shown that there are three characteristic velocites in the coupled
set, one being the local wind speed and associated with the slow Rossby modes that govern weather motions,
the other two being associated with the propagation of gravitational oscillations. Thus the coupling of a semi-
Lagrangian treatment of advection with a semi-implicit treatment of gravitational oscillations corresponds to
integrating along the most unportant charactenstlc direction of the problem (i.e. that associated with the local

windspeed): this is somewhat similar in spirit to a suggestion given on p. 860 of Morton (1985)
Eqgs. »(17) -(18) can be manipulated to give

Ut :__ézi[m; +bg |+ known, | (20)
o ArpoL '
1% =——7[a¢y —b¢x]+known, | @1)

-1 o i
where @ =[1+(fAt/2)"| " and b= (fAt/2)a. Taking the divergence of (20)-(21) and eliminating this i (19)

then leads to the elliptic-boundary-value problem -

Ing
[(ad)x)x +(a, ) + (bg,) —(b9.),- 4&?} = known. (22)
(x,t+At1)
We now summarise the above as the following algorithm: _
8] Extrapolate V using (13) and solve (12) iteratively for the displacements «,, for all meshpoints x,,,

using values at the previous timestep as initial guess, and an interpolation formula. Note that it is
only necessary to perform this .corﬁputation once per timestep, since the same trajectory is used for all
three advected quantities. V '

(i) Compute upstream (superscript 0) quantities in (17)- (19) by first computing derivative terms (e.g.
U,) and then evaluating quantities upstream (these two operations are not commutative!). Here itis
more efficient to collect together all terms to be evaluated upstream in a given equation before
interpolating (the distributive law applies).

(iii) Solve the elliptic-boundary-value problem (22) for o(x,t+ At).

(iv) Back substitute @(x,# + At) into (20)-(21) to obtain U(x,t+ Af) and V(x,z+ At).

The above elliptic-boundary-value problem is weakly non-linear and is solved iteratively using ¢ at the previous

timestep as a first guess. It is only marginally more expensive to solve than the Helmholtz problem associated

with traditional three-time-level semi-implicit Eulerian discretisations.

Semi-Lagrangian advection has also been successfully coupled with the split-explicit method (Bates and
McDonald, 1982) and the altemating—direction-iﬁiplicit method (Bates, 1984; Bates and McDonald, 1987). Both
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of these approaches have the virtue of being simpler than the semi-implicit semi-Lagrangian one (there is no
elliptic-boundary-value problem), but unfortunately they do not perform as well, parﬁcularly at large timestep.
To date it appears that the best schemes arise from associating semi-Lagrangian advection with a serni-implicit
scheme, and that timesplitting is best avoided since it introduces unacceptably-large truncation errors for large
timesteps.

4. SOME EARLY ADVANCES

When Robert (1981) proposed associating a semi-Lagrangian treatment of advection with a semi-implicit
treatment of gra\)itational oscillations, it was thought that this approach was restricted to three-time-level
schemes in Cartesmn geometry u’singv a finite-difference discretisation. This has happily proved not to be the
case, and in this section we discuss some important extensions of the approach. Although important, the
extension to two-time-level schemes has already been discussed in some detail, and will therefore only be
briefly discussed in this section in the context of other extensions. Only early extensions of the semi-Lagrangian
methodology are given here. This is both for reasons of space, and because more recent advances are in any

case covered in other contributions to this volume.

4.1 Finite-element discretisations and variable-resolution

Pudykiewicz and Staniforth (1984) coupled semi-Lagrangian advection with a uniform-resolution finite-element
discretisation of the diffusion terms in the solution of the 2-d advection-diffusion equation, and this was
extended to the 3-d case in Pudykiewicz et al. (1985). Staniforth and Temperton (1986) extended the
methodology in the context of a coupled system of equations (the shallow-water equations) in two ways. Firstly
they showed that in this context the semi-Lagrangian method can be coupled to a spatial discretisation scheme
other than a finite-difference one, viz. a finite-element discretisation, and secondly that it can alsb be applied on
a variable-resolution Cartesian mesh. A further doubling of efficiency was then demonstrated in Temperton
and Staniforth (1987) by replacing the three-time-level scheme of the Staniforth and Temperton (1986) model
with a two-time-level one.

42 Non-interpolating schemes

The interpolation in a semi-Lagrangian scheme, as mentioned previously, leads to some damping of the smallest
scales. To address this problem Ritchie (1986) proposed a non-interpolating version of semi-Lagrangian
advection. The basic idea here is to decompose the trajectory vector into the sum of two vectors, one of which
goes to the nearest meshpoint, the other being the residual. Advection along the first trajectory is done via a
semi-Lagrangian technique that displaces a field froﬁ one meshpoint to another (and therefore requires no
interpolation), while the advection along the second vector is done via an undamped three-time-level Eulerian
approach such that the residual Courant number is always less than one. Thus the attractive stability properties
of interpolating semi-Lagrangian advection are maintained but without the consequent damping. The non-
interpolaﬁng methodology is not restricted to gridpoint discretisations and has also been successfully applied to
spectral discretisations (Ritchie, 1988). ' '

105



STANIFORTH, A. & J. COTE: SEMI-LAGRANGIAN METHODS

An alternative way of viewing the non-interpolating formalism of Ritchie (1986) is presented in Smolarkiewicz
and Rasch (1990). They showed that it is possible to convert any advection algorithm into a semi-Lagrangian
framework, thus permitting the use of much larger timesteps with the scheme for little additional cost. This
interesting realisation is of potential benefit for models whose maximum timestep is limited by an Eulerian
treatment of advection. To demonstrate this idea they successfully extended the stability limit of the Tremback et
al. (1987) family of algorithms. In so doing they obtained a family of schemes which is equivalent to using a

time-split semi-Lagrangian scheme with Lagrange interpolation.

43 Spherical geometry ,

The convergence of the meridians at the poles of an Eulerian finite-difference model in spherical geometry leads:
to unacceptably-small timesteps being required in order to maintain computational stability. The usual approach
to this problem is to somehow filter the dependent variables in the vicinity of the poles. While this procedure
does relax the stability constraint, it unfortunately deteriorates accuracy. Ritchie (1987) demonstrated that it is

possible to passively advect a scalar over the pole using semi-Lagrangian advection with timesteps far exceeding

the limiting timestep of Fulerian advection schemes. This paved the way to applications in global spherical
geometry. The first such application was to couple semi-Lagrangian advection with a spectral representation
(i.e. expansion in terms of spherical harmonics) of the dependent vaﬂableé to solve the shallow-water equations
over the sphere (Ritchie, 1988). A new problem arose here associated with the stable advection of a vector
quantity (momentum). The solution proposed in Ritchie (1988) is to mtroduce a tangent plane to avoid a weak
instability due to a metric term. The diagnosis of this problem, ‘which led to the tangent plane algorithm, is
described in Desharnais and Robert (1990). Cbté (1988) and Bates et al. (1990) have respectively proposed
alternative approaches based respectlvely on the use of Lagrange multlphers and the vector form of the
momentum equation. Although these three approaches appear very dlfferent they nevertheless lead to

essentlally the same algonthm

Ritchie (1988) successfully mtegtated hlS shallow—water model w1th a tlmestep six-times longer than that of the
limiting timestep of the corresponding Eulerian semi-implicit spectral model (which in turn uses a six-times-
longer timestep than that of an Eulerian leapfrog model). C6té and Staniforth (1988) then further doubled the
efficiency of the Ritchie (1988) model, by replacing its three-time-level scheme by a two-time-level one

analogous to that of Temperton and Staniforth (1987) for Cartesian geometry.

4.5 3- d apphcatlons ,

Thus far we have mostly discussed the use of semi-Lagrangian advection for extending the hmltmg timestep of
2-d applications for NWP. To be useful the method must also be applicable in 3-d. A first step in this dlrectlon
was taken in Bates and McDonald (1982), where a semi-Lagrangian tréatment of horizontal advection in a 3-d
(baroclinic primitive equations) model was coupled with a split-explicit time scheme in the Irish Meteorological
Service's operational model of the time. This was the first scheme to demonétrate the enhanced stability of
semi-Lagrangian advéction in a 3-d model, and the first to be used operationally. However it is only O(Ar)
accurate and although stable with long timesteps, the increase in timestep is consequently very much limited by

accuracy considerations. Robert et al. (1985) then introduced a three-time-level O(Atz) -accurate 3-d limited-
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area gridpoint model with a semi-Lagrangian treatment of horizontal advection, and were able to successfully
integrate with longer timesteps than had hitherto been possible. This demonstrated the practical importance of

achieving O(Atz) accuracy.

A somewhat similar model to the Robert et al. (1985) one, but with mountains included, is described in Kaas
(1987). It was reported that when strong winds blow over steep mountains, instabilities may appear if the linear
part [ (d) + RT;In p_,)] of the horizontal pressure gradient term in sigma coordinates is evaluated as the average
of values at the endpoints [(x,z+Ar),(x-2a,t—Af)] of the trajectory, but the nonlinear part
[R(T —T,)In ps] is evaluatéd at the midpoint (x - &t,#). This behaviour was attributed to a lack of balance (in
the discrete approximation) between two large terms of opposite sign, due to their being evaluated at different
geographical points. The reported solution to this problem is to evaluate the non-linear part as the avérage of its
values at the geographical points associated with arrival (x) and departure (x - 2¢), both values being taken at
the intermediate time level t. While this approach appreciably mitigates the problem, it does not resolve i
comﬁletely. Coiffier et al. (1987) studied it in the context of a 2-d linearised baroclinic model, and show that the
use of ysemi-La‘grangian advection with large timesteps leads to an incorrect steady-state solution when the model
18 orographically forced. Their analysis to explain this behaviour also applies to the formulaﬁon proposed by
Kaas (1987). It suggests that the seriousness of the problem is a function of timestep, windspeed and detail (the
larger the timestep and windspeed, and the more detailed the orography, the worse is the problem), and of
whether the time scheme is a two- or three-time-level one (two-time-level schemes are better since the problem
first occurs with timesteps twice as long as those of three-time-level schemes), and this was confirmed by the
Rivest et al. (1993) analysis . They showed that a centred semi-implicit semi-Lagrangian scheme gives rise to a

spurious numerical orographic resonance, and that this can be addressed by a time decentring of the scheme.

The timesteps of the early 3-d semi-implicit semi-Lagrangian models are limited by the stability of an explicit
Eulerian treatment of vertical advection: or put another way, vertical resolution is limited when using a large
timestep. To remove this limitation, Tanguay et al. (1989) proposed a three-time-level model that uses semi-

Lagrangian advection in all three space dimensions.

4.6 Non-hydrostatic systems

As computers become ever more powerful, it becomes possible to run models at higher and higher resolution.
This motivates the need to efficiently integrate non-hydrostatic systems of equations for real-time forecasting
applications over large domains. Such systems admit acoustic modes, which travel much faster than either
Rossby or gravity modes. Consequently if care is not exercised, the limiting timestep will be even more
restrictive than that associated with an explicit primitive equations model. This is because an explicit time
treatment of the terms associated with the propagation of acoustic energy leads to a limiting timestep that is much
smaller than that associated with an explicit treatment of gravity-wave terms, completely eliminating the

efficiency advantage of a semi-implicit/ semi-Lagrangian treatment of the gravity/ Rossby mode terms.

Since the acoustic modes carry very little energy, it is permissible to slow them down by the use of a time-

implicit treatment of the terms responsible for their existence, by analogy with the retarding of the gravity modes
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by the semi-implicit scheme. This is the approach taken in Tanguay et al. (1990), who generalise the semi-
implicit semi-Lagrangian methodology for the hydrostatic primitive equations to the non-hydrostatic case. They
show that it is possible to integrate the fully-compressible non-hydrostatic equations for little additional cost, and

this opened the way to highly-efficient non-hydrostatic models.

5. CONCLUSIONS
The semi-Lagrangian methodology has been presented together with some of the early advances. Information

on more recent advances may be found in companion papers in this volume.

Since André Robert's pioneering work of the early eighties, the semiQimplicit semi-Lagrangian approach has
been extended from finite-difference applications in Cartesian geometry to finite-difference, finite-element and
spectral applications in both Cartesian and spherical geometry. Best results have generally been obtained when
coupling semi-Lagrangian advection to a semi-implicit treatment of gravitational oscillations, rather than to
splitting methods such as spht—exphcn and alternating- dlI'CCthl’l implicit. It is crucial to avoid 1ntr0duc1ng
O(At) truncation errors in either the trajectory computations or the discretization of the governing equations, in
order to fully reap the benefit (i.e. long timesteps) of enhanced stability. It is also important to use the semi-
A Lagrangian method for vertical as well as for horizontal advection, in order to avoid unduly limiting vertical

resolution. This has the added benefit of facilitating a higher-order accurate treatment of vertical advection.
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