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ABSTRACT
Several aspects and approaches related to the prediction of the uncertainty of numerical
weather forecasts are considered. These considerations are centered around the problem of
how to propagate in time an initial probability density function given a numerical weather
prediction model. In studying the time evolution of the probability density function,
the main emphasis is placed here on the time evolution of the forecast error covariance
structure. Properties of singular vectors and of eigenvectors of error covariance matrices
are discussed and illustrated in the framework of a quasigeostrophic model. In this context,
a singular-vector-based Monte Carlo method is described and illustrated. Issues related

to nonlinearities are discussed briefly.

1. Introduction and motivation

One of the major limiting factors on the accuracy of short— to medium-range weather fore-
casts that is achievable when forecasts are made with dynamical models of the atmosphere
are errors in the specification of the initial state of numerical weather prediction (NWP)
models. In addition to errors in the specification of the initial state of the model, errors in
the model formulation itself degrade the quality of forecasts. The importance of these error
sources in degrading the quality of forecasts is related to the fact that errors introduced
in atmospheric models are, in general, growing, as demonstrated by Lorenz (1963, 1982).
Both of these errors are — in conjunction with different atmospheric flow patterns — also

responsible for the day-to-day variability of atmospheric predictability and of the skill of

* permanent affiliation: Institute for Meteorology and Geophysics, University of Vienna,
Vienna, Austria.

27



EHRENDORFER, M.: PREDICTION OF THE UNCERTAINTY OF NUMERICAL WEATHER FORECASTS...

individual forecasts. The uncertainty introduced into NWP forecasts through these two
error sources, and specifically its quantification or prediction has been the sub ject of many
studies conducted in parallel to the continuous development of NWP models (e.g., Epstein
1969, Leith 1974). However, even before the advent of NWP models the potential presence
of the above two error sources in a mathematically-physically based forecasting process
was recognized (Bjerknes 1904), as was the unavoidable uncertainty of weather forecasts
and the necessity for its subsequent quantification (e.g., Cooke 1906, von Myrbach 1913;
for an overview on the early history of probability forecasts, see Murphy 1998).

The early recognition of the implications of such misspecification of the initial model
state on ensuing forecasts is illustrated here by a quotation from an interview with P.D.
Thompson (1987), recounting difficulties in providing good initial model states in the late
1950s/early 1960s: “At that time, about the only information we had from over the Pacific
Ocean, at least near the continental United States, was from weather ship Papa in the Gulf
of Alaska. Weather ship Papa was not terribly reliable. There were times when the reports
did not come in at all. There was a big hole there, and no data at all, and one simply had to
guess what was there. One had to make a forecast anyway, so you would make a forecast,
but on some occasions, the data came in, but late. We were able to go back and put
in the data, then re-run the forecast with something like correct initial conditions. Then
we compared the forecast with and without the data from the weather ship Papa. What
we discovered that we might do was characteristically get errors of perhaps 150 meters at
500 millibar height as a result of not having the data, but a couple of days later these
would show up as errors of perhaps 240 meters over southern Canada. Now that’s a pretty
big error. Then, I began to realize that this was a particularly flagrant example of what
happens when the initial state is not correct, but that everyday, the initial state is in some
degree incorrect. That is to say that the initial analysis is based on a rather small sampling
of data which is rather widely scattered in space that’s transmitted digitally, so there’s
"'some roundoff error. But even worse, there are large errors of interpolatibﬁ, depending on
how far apart the stations are. So even if the analysis we made were the most probable,
or the best analysis you could possibly make under the circumstances, there were many
neighboring initial states that were almost equally probable. So then the question was,
well, suppose that you consider not one deterministic prediction, but a whole ensemble of
deterministic predictions, each starting with a slightly incorrect initial state, which is more
or less randomly distributed around the most probable initial state.” (see also, Thompson
1957). |

For a general and consistent treatment of the above—mentioned error sources it be-

comes necessary to view the atmospheric prediction problem in a probabilistic framework,
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such as outlined in the above quotation, leading to the concept of the specification of the
initial model state in terms of a probability density function (pdf) that evolves in time
under the atmospheric dynamics. Approaches for studying this time evolution of an initial
pdf, as well as difficulties encountered in this process are the subject of this paper. In the
discussion of such approaches particular attention will be given to the problem of deriving
efficiently second—order moment (variance/covariance) information from the time-evolving
pdf. The even more challenging problem of deriving probabilities for the occurrence of cer-
tain events (i.e., for the likelihood of the variables involved to lie within certain ranges)
from the time—evolving pdf is not discussed in detail here.

The organization of the paper is as follows. The general problem of uncertainty
prediction is briefly restated in mathematical terms in section 2. Possible approaches
to this general problem are discussed in section 3 in general terms. Due to central role
occupied by the Liouville equation in the process of uncertainty prediction, two results
connected to this equation are discussed in section 4. In section 5, the specific problem
of variance/covariance prediction is considered. The discussion is centered around the
so—called singular vectors and their relation to the eigenstructure of the forecast error
covariance matrix. Results relevant to this problem are presented in this section for a
quasigeostrophic model; also, a singular—vector—based Monte Carlo approach to covariance
prediction is described and illustrated. The paper is concluded with a discussion of open
questions. In particular, ideas for relaxing linearity assumptions in covariance prediction,

and the computation of singular vectors are discussed.

2. Uncertainty pfediction in NWP

The general problem of predicting the uncertainty of a forecast produced with a numerical
weather prediction NWP model may be stated as follows. To introduce the notation, an
NWP model is represented here in an abstract manner as an operator M, in general
nonlinear, that integrates an initial condition xo forward up to time ¢ with the result being
the model state x;:

X = Mi(x0). (2.1)

As mentioned in the introduction, the operator M; seems to possess the property of being
able to produce quite different results at time ¢ given only slight changes in the state at the
initial time. In other words, atmospheric models exhibit sensitive dependence on initial
conditions which is a property of a chaotic system (see, also, Lorenz 1996). However, one

also relies on the notion that the mapping described in (2.1) is in some sense unique; that
is, a given initial condition results in a specific state at time ¢. Or, stated differently, it is

not possible on the basis of (2.1) that two different initial states result in the (exact) same
state at time ¢.
29



EHRENDORFER, M.: PREDICTION OF THE UNCERTAINTY OF NUMERICAL WEATHER FORECASTS...

Given (2.1), the problem of predicting uncertainty may be stated as: predict the statis-
tics or the probability density function of x; given that the initial state, xg, is uncertain.

This latter uncertainty may, for example, be described in one of the following ways:

xg ~ Ny (x5, V), | (2.2)
E(x0) = x§ D(xo) =V, (2.3)
p(x,t = 0) = po(x). (2-4)

Here, (2.2) specifies the full initial pdf in terms of an n-dimensional normal pdf with
parameters x§ and V (n will denote the dimension of the phase space). In (2.3), the
information about the uncertainty in the initial state is restricted to knowledge of its first
and second moments (E denotes the expectation operator, and D the dispersion operator).
In (2.4), the function pg describes the initial pdf in a generic form. An obvious choice for
x§ is the analysed state of the atmosphere (the best estimate available), and for V its
associated analysis error covariance matrix.

The problem as posed here can be approached in various ways, as described in the
next section. It should be mentioned, however, that even a solution to this problem will,
in general, be incomplete in the sense that it will not contain all the desired information
about the uncertainty of the forecast x;, because of model errors. Model errors have been
neglected in writing (2.1), and their effect is, as discussed in section 1, to introduce further
uncertainty during the model integration, beyond the initial state uncertainty. It is, in
principle, possible to include a model error term in (2.1), or in the analogous equations
below (see also next section). Such a term has not been included, however, since the

emphasis here is on prediction of uncertainty arising from initial state uncertainty.

3. Possible approaches to uncertainty prediction in NWP

The problem posed in the previous section (without the complication of model errors) is
known in the statistical literature as the problem of finding the pdf of a transformed vari-
able (here, x;) given the pdf of the untransformed variable (here, xp); see, for example,
Berliner (1998), DeGroot (1987). Clearly, however, the complicated form of the transfor-
mation operator M, as well as its dimensionality, are leading to additional complications.
This view on the problem posed will be taken up briefly again in section 4.1.

An alternative description for the time evolution of the pdf p;(x) is provided by the
so—called Liouville equation (LE) (e.g., Thompson 1972, Epstein 1969, Fortak 1973), which
is a linear partial differential equation in the single unknown p; (i.e., the pdf at time ).
The LE describes the time evolution of the pdf p; in phase space, when the governing

phase space dynamics is given by the (possibly nonlinear) dynamical system: -
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d
prete ®(x), (3.1)

where the vector—valued function ® describes the (autonomous), generally nonlinear, dy-
namics governing the time evolution of the state vector. Note that (3.1) may be interpreted
as prescribing “velocities” in phase space. In this situation, the LE may be written in the

following format:

o ")+2 02288 ), (32)
where:
P(x) = %ﬂ (3.3)
k=1

denotes the divergence of the flow in phase space, n (as before) indicates the dimension of
the model phase space, and subscript k identifies the kth component of the relevant vector.
The LE (3.2) states that the local rate of change of the pdf at any point in phase space
must be exactly balanced by the net probability flux across the surface of a small, but
finite, volume element surrounding that point in phase space. As such, the LE is entirely
analogous to the well-known continuity equation in fluid mechanics. :
In analogy to the continuity equation in fluid mechanics, the LE, written in the form
(3.2), may also be interpreted as expressing the conservation of the phase space integral
of the pdf. Such conservation prohibits the spontaneous creation or disappearance of
trajectories in phase space (analogous to the creation or destruction of mass). In other
words, every point in phase space at a given time ¢ must uniquely correspond to a point
in phase space at another time (e.g., the initial time; see also, Lin and Segel 1988). Such
uniqueness will be observed for the governing dynamics (3.1) (due to the properties of first—
order ordinary differential equations; see, e.g., Nicolis 1995). This relationship between the

points on a given trajectory is expressed here in the following form:
x=x(8,t) & E=E(x1t), (3.4)

where E is the (unique) point in phase space that, under the dynamics (3.1), is mapped

into the point x as time evolves from ¢ = 0 to ¢. Due to its linearity, the solution to the
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LE for the initial condition: ,
pe=0(x) = po(x), (3.5)

may be explicitly expressed in the following form:

pu(x) = @) oo~ | ybe(E O] (36)

=h(x,t)

Thus, in view of (3.6), it suffices, in principle, to evaluate (3.6) and to compute from
this solution any desired statistics of p;. Needless to say, there are various complications
prohibiting this direct approach. The most prominent of these complications is the high
dimensionality of the phase space in which the partial differential equation (3.2) must be
considered for realistic NWP models. In the context of the solution (3.6), it is important to
note that, for given x and ¢, as arguments for the pdf p, E must be regarded as a function
of x and ¢ (see also, Ehrendorfer 1994a, b). Thus, the factor & introduced here (see also,
section 4.1), also only depends on x and ¢.

Before proceeding, it is worth mentioning that the LE generalizes to a form of the so—
called Fokker—Planck equation for the situation that stochastic forcing terms are included
in (3.1) as representations of model error (Thompson 1983). Also, the formulation of the
LE for discrete-time dynamical systems is known as Frobenius—Perron equation (Nicolis
1995).

As an illustration of the above, the solution of the LE for the one-dimensional system:

d 3

P (3.7)
is considered for two different choices of the initial pdf. In this case the LE takes on the
form: Opu(z) Opu(z)

9pT) 9P g2
5 + (z — z°) 9 (1 —3z%)pi(z). (3.8)

The solution to (3.8), evaluated by using (3.6), is shown in Fig. 1, for two initial pdfs
that are both (univariately) normal with the same variance, but with different means;
specifically, in (a) zo ~ A(0.05,0.012), and in (b) zo ~ AN(0.1,0.01%). The solution to
(3.8) is plotted in Fig. 1 at time increments of 0.2. It can be seen that the initially
symmetric pdf becomes bimodal quite rapidly, with the pdf approaching the two stable
equilibrium points at +1.

In view of the difficulties involved with the direct computation of the solution of the

pdf over the entire phase space, Epstein (1969) proposed to solve instead the equations
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bimodal example, dot x = x - x¥xXx
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Fig. 1. Solution of the Liouville equation for the dynamical system (3.7) for two different
initial probability density functions pp: (a) A(0.05,0.012) (b) A(0.1,0.01%). The time
evolving pdfs are plotted at time increments of 0.2.
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governing the time-evolution of first, second, and possibly higher moments of the pdf of the
model state vector. These equations are referred to as the stochastic-dynamic equations,
and the procedure of solving these equations as stochastic dynamic prediction (see also,
Fortak 1973, Fleming 1971, Pitcher 1977).

This approach requires the derivation of the stochastic-dynamic equations and their
subsequent integration. In the presence of nonlinear governing dynamics (2.1), or (3.1),
the prognostic equations for moments of different order are coupled and one has to solve
the closure problem. However, the similarity of the stochastic-dynamic equations and
the equations used in the extended Kalman filter (e.g., Bouttier 1996) seems to make
this approach highly attractive. In addition, all the terms appearing in the mean and
the variance/covariance equation seem computable (in principle) given the forecast model
and its tangent-linear model (neglecting the coupling with the third-moment equation,
however). The ability of directly integrating the equations for mean and second-order
moments may therefore make the method of stochastic dynamic prediction quite attractive.
Some of these connections are discussed in more detail in the last section, where also some of
the differences between the Kalman filter equations and the stochastic-dynamic equations
will be pointed out (see, also, Cohn 1993).

As an alternative to stochastic dynamic prediction, Leith (1974) proposed the in-
tegration of the NWP model (2.1) from a set of randomly chosen initial conditions all
consistent with the uncertainty in the analysed state. This Monte Carlo (MC) approach
is presently at the basis of all currently operational efforts that are aimed at gaining in-
formation about the time-evolved pdf. Various possibilities are under investigation for
devising sampling strategies from the initial pdf that are more efficient than a random
sampling strategy, mainly in view of limitations on the sample size. Presently, such multi-
ple model integrations are carried out operationally at, for example, the European Centre
for Medium-Range Weather Forecasts (ECMWF; see, Molteni et al. 1996, Palmer et al.
1997), and at the National Centers for Environmental Prediction (NCEP; see, Toth and
Kalnay 1997). At this point reference is also made to the recent overview on uncertainty
prediction by Ehrendorfer (1997).

It should be mentioned that the theoretical basis for the MC approach to predict the
moments of the time—evolve)d pdf lies in the fact that the moments (or, more generally,
functions) of a transformed random variable can either be computed by using the pdf
associated with the transformed variable, or by using the pdf of the untransformed variable

(see, DeGroot 1987). As an illustration of this fact, consider the computation of the mean
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of x; through either of the following expressions:

Elx] = / xpy(x)dx, - (39)

E[x;] = E[M¢(x0)] = /,Mt(x)po(x)dx, (3.10)

where the integration extends over phase space. These equations may immediately be
generalized to functions of x;, leading to the time—evolved variance/covariance structure

and other statistics. The MC approach exploits expression (3.10).

4. Comments on the Liouville equation

In view of the central role played by the LE in the context of uncertainty prediction, two

observations related to this equation will be discussed in this section.

4.1. A likelihood ratio

The general expression that relates the pdf of a (nonlinearly) transformed variable to the
pdf of the original variable involves the Jacobian determinant J of this transformation (see,
e.g., Anderson 1958, DeGroot 1987). If this general expression is applied in the context
of the notations introduced in the previous sections, the ratio of the pdfs introduced in

section 3 can be expressed as:

t(X 1 -1 ,
:))OEE)) ST [|de“‘"<s,t>|] (4.1)

where the Jacobian determinant J:

x(E, 1) |

JEdet( 595 E) ’ (4.2)

is the determinant of the Jacobian matrix (i.e., the matrix of derivatives) of the transfor-
mation (2.1) (see also (3.4)), evaluated at = (double vertical bars, as in (4.1), denote the
absolute value). The uniqueness of the transformation, as expressed in (3.4), is a necessary
condition for J to be nonzero. It is noted in passing that if the transformation between
the two variables changes the physical units of the variables involved, this will be reflected
by a unit—carrying determinant J; more generally, a pdf reflects the physical units of the

variables described, which becomes also very clear from the expressions (3.9) and (3.10).
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The operator M(z ;) appearing in the second equality in (4.1) is the resolvent of
the tangent-linear model, usually considered as not carrying physical dimensions. The
dependence of the resolvent on the point of linearization, 2, and time ¢ is indicated through
the subscripts. The connection between J and M= (i.e., J is the determinant of the
tangent-linear model) becomes clear by noting that the Jacobian matrix of derivatives
appearing in the Jacobian determinant (4.2) also appears in the Taylor explansion of
M (xq + 7o) where it is referred to as the resolvent of the tangent-linear model: '

OM,(x)

M(xo + Zo) = Me(x0) + ——5X—~|XOZD + h.o.t. ~ (4.3a)

= Mt(XQ) + M(x0,t)Z0 + h.o.t. (4.3b)

where h.o.t. indicates higher—order terms, and 2z, represents an initial perturbation. Fur-
ther, the combination of (4.1) and (3.6) leads to the following expression:

-1

ZE;)) - [|det M(E,t)” — h(x,1). (4.4)
The pdf-ratio appearing on the left—hand-side in (4.4), called here likelihood ratio, indicates
by how much the value of the initial pdf taken at E is different from the value of the pdf p;
taken at x. This ratio may also be interpreted as the change of the pdf along the trajectory
from E to x, since E evolves into x over time (see (3.4)). |

As expressed by (4.4), this likelihood ratio h may be computed in two different, but
entirely equivalent, ways. First, according to the definition of & in (3.6), it may be evaluated
as the time integral of the divergence in phase space. Second, according to (4.1'), it may be
evaluated by computing the determinant of the relevant tangent-linear resolvent. By eq.

- (4.4), these two approaches are equivalent, which may intuitively be understood by noting
that both the divergence and the determinant expressions are related to the change over
time of a phase space volume (see, Arnold 1989). In addition, it may be seen by referring
back to (3.6) that h =1 for 9 = 0 (no divergence of the flow; see also below).

The time dependence of h is illustrated in Fig. 2 for the model proposed by Lorenz
(1984) as a prototype of the general circulation:

‘d T —y? — 22 —az +aF
Z v ]= zy—brz—y+G |, (4.5)
z bxy+ Tz — =z

with the following parameters:

a=0.25 b=4.0 F=38.0 G=1.25 (4.6)
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Lorenz Model
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Fig. 2. The likelihood ratio h, defined in (3.6), for the dynamical system (4.5),

as a
function of time, for six different initial conditions E.
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and the following expression for the divergence in phase space:

Y(z,y,2)=2r—-2—a (E%-}-%-I—gz-). (4.7).
Note that the phase space divergence of this system depends on the location in phase
space through the variable z. The curves shown in Fig. 2 differ by the choice of the initial
condition used to integrate (4.5). Each curve has been computed by both of the approaches
outlined above: (i) determine the time integral of the divergence along the trajectory up
to time ¢ according to (3.6), (ii) determine explicitly the tangent-linear model resolvent
(for a given initial condition), and compute the inverse of its determinant according to
(4.4). Tt can be seen that both computations give identical results. It may be seen that
the likelihood ratio, considered as a function of forecast time, is also a function of the
starting point; due to the nature of the likelihood ratio it is always one for ¢ = 0. On the
other hand, the likelihood ratio may simply be considered as measuring the (accumulated)
divergence in phase space during the course of a model integration. Finally, note that for
long integration times, the logarithm of the likelihood ratio h (refer to its definition in
(3.6)), when normalized by the integration time £, is related to the sum of the Lyapunov
exponents of a dynamical system (as this sum is also a measure of average phase space
divergence). For the system (4.5), with parameters as in (4.6), the sum of Lyapunov
exponents is negative (i.e., the system is dissipative), with the léading Lyapunov exponent
being positive (i.e., the system is chaotic); see also, Talagrand (1996).
It is of interest to consider the above developments in the following linear (auto-

nomous) context, where (3.1) is assumed to be of the form:

d
—x=A .
X X, (4.8)

with A time-independent, which implies that (2.1) takes on the form:
x; = Lixq, | (4.9)
where the resolvent L; can now be expressed as the following matrix exponential:
L; = exp(At). (4.10)

In this case the (position—independent) function 1 simplifies to the trace of A (i.e., the sum
of the diagonal elements of A), which may also be written as the sum of the eigenvalues
of A denoted ag:

1 = trace (A) = z": ay . (4.11)
k=1
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For convenience it is assumed that A is diagonalizable. Then, the likelihood ratio, defined
in (3.6), is only a function of time, and takes on the form: |

h(t) ="exp (_ /t Xn:akdt) = exp(_tzn:ak) _ n o0kt —
0 k=1 k=1 k=1
= H (ea’“t)_l =114 = (H lk)~1 = (det L) 77, (4.12)

where [j; denotes the eigenvalues of L; (note that the operators L; and At are dimensionless;
see also section 5.2.). In writing (4.12), the eigenvalues of L; have been inferred from
(4.10) from the eigenvalues of A (with diagonalizable A); further, the fact is used that the
determinant of a matrix is the product of its eigenvalues. Note that (4.12) is a special case
of (4.4), for the linear governing dynamics (4.8). Clearly, in this case the transformation
of pdfs is particularly simple, since the likelihood ’ra,tio is independent from the position

in phase space. Note also that det L; is positive in the present situation.

4.2. The product of growth rates

‘The second observation related to the LE concerns the product of growth rates of a com-
plete set of perturbations, for the class of dynamical systems with vanishing phase space
velocity divergence. With the previous deﬁnition, it is, by eq. (4.4), in general true that:

det M(xo,t) == :i:l/h(x, t). (413)

Denote by z; the difference of two nonlinear (perturbed minus unperturbed) model inte-

grations at time ¢, which, by (4.3b), is given as:
z: = My(x0 + 20) — Mi(x0) = H (xo,t) (20) = Mx, 1)Z0 + h.o.t. (4.14)

where H(x, ) (depending on initial condition x¢ and time t) is the fully nonlinear error
evolution operator. If the higher—-order terms in (4.14) are neglected, the tangent—linear

approzimation is made, and the corresponding result is denoted as z;ﬂ’:

ZtTL = M(XO,t)Zo . ‘ | (4.15)

Note that the degree of agreement (i.e., the size of h.o.t.) between acting with H(x, s or
M(,,,+) on an initial perturbation zy will be, in general, a function of £, size and structure

of zg, as well as of the linearization point xq (see, e.g., Buizza 1995). The subscripts on
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operators 7 and M will be dropped from now on, unless they are explicitly required for
clarity. Consider at this point the optimization problem:

max JTV = (zI%; 2] ") = (Mzg; Mzg)  subject to: (zo;20) = 1, (4.16)

Zo

where the pointed brackets denote an inner product used to measure perturbation sizes.
Problem (4.16) leads to the following eigenproblem:

(CTC)'MT(CTC)Mzo = Azg  with: =g (CTC)zo =1, (4.17)

where the positive—deﬁnite maitrix CTC is used to denote the inner product explicitly. The
eigenvector of (4.17) associated with the largest eigenvalue solves (4.16) (see also section
5). Given the eigendecomposition indicated in (4.17), the corresponding eigenvalues A

may immediately be used to compute the detetminant of My, 1) by forming their product:
- Ty~ 1paT T T 2
[T 2 = det[(€7€) "M (CTC)M] = det (M M) = (det M)?, (4.18)
k=1

where basic properties of determinants have been used (Strang 1993). Combining the
square of (4.13) with the result (4.18) one obtains:

h?(x,t) = (ﬁ ,\k)ﬁl. < (4.19)
k=1

The result (4.19) states that the squared likelihood ratio is equal to the inverse of the
product of the eigenvalues obtained by solving (4.17). This result is not surprising since
the computation of the \; amounts to determining the determinant of the tangent—linear
resolvent (see also (4.4)). Nevertheless, the result (4.19), which is perfectly general, points
to the possibility of computing the likelihood ratio, as used in (4.4), for any nonlinear
model for which the tangent-linear resolvent is available. Recognizing the limitation that
this computation proceeds by specifying = and ¢, rather than x and ¢ (which is what one
would really like to specify; see (4.4)), such a-computation of the likelihood ratio amounts
— under this limitation — to solving the LE for given ¢ for the value of the pdf at one
particular point in phase space. Obviously, the cost of this approach is.very high, as it
requires the computation of the entire Ay—spectrum. In addition, it is recognized from
expression (4.19) that this equation for the likelihood ratio is not very useful for deriving
any bounds on h? if only the leading portion of the Ax—spectrum is known (this very leading

portion is available operationally at ECMWF), since the trailing part of the spectrum will
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become increasingly important (if the relevant A are small enough). Note finally that
no assumptions about the initial pdf are entering in such a computation of the likelihood
ratio.

Nevertheless, even in view of the limited usefulness of (4.19), this expression still
allows making a general statement for dynamical systems with ¢ = 0 (vanishing phase
space velocity divergence). In that case, by (3.6), h = 1, and consequently, by (4.19):

p=0 = J[m=L (4.20)
k=1

This result states that for a dynamical system with ¢ = 0, the product of eigenvalues
resulting from the optimization problem (4.16) must be one. Note, however, the following
subtlety: since h, defined in (3.6), is the time integral over the divergence at different
points in phase space (along a trajectory), it will be strictly one only if the time integration
necessary to reach these different points in phase space preserves the 1) = 0 property of the
continuous system. In other words, evaluating h, on the basis of (4.19), by computing the
A through solving (4.17) with a discrete tangent-linear resolvent may potentially lead to
h? # 1, even for a system with 1/ = 0 (such as the unforced barotropic vorticity equation),
if the time integration destroys the property of volume conservation (see, Egger 1996).
Now, two final remarks are made at this point, where it assumed that ¢ = 0 and it is
indeed found (numerically) that A = 1. In this case, the first remark concerns the symmetry
(or asymmetry) of the Ag—spectrum. In fact, it is conjectured (without proof) that even

under these very special circumstances the Ay spectrum is, in general, asymmetric so that:

1
An—k+1

Ak £ k=1,2,.., g (4.21)

For example, the largest eigenvalue is not, in general, the inverse of the smallest eigenvalue.
It might be of interest to study the restrictions one has to impose (e.g., on the basic state)
to achieve (or to be able to prove analytically) symmetry. The second remark concerns
the sum of the A;. Here, it is immediately evident that these special circumstances (¢ = 0

and h = 1) imply that the normalized sum of eigenvalues is greater or equal than one: -
1 n
- Z,\k >1, (4.22)
"= |

where equality holds only if all A; are equal to one. The result (4.22) follows from the fact
that the arithmetic mean is always greater (or equal) than the geometric mean. Conse-

quently, average growth must occur.
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5. Prediction of forecast error covariances: Singular vectors
5.1. General remarks

In view of the difficulties encountered when attempting to predict the entire pdf, as outlined
through the approaches in section 3, attention may be focused on the matrix of second
moments of the time—evolved pdf, also called the forecast error covariance matrix, defined

as:

S, = E(P[xt - B(x))) (P [x; — E(xt)])T. (5.1)

As before, x; denotes the model state at time ¢, and the expectation operator F indicates
an integration over phase space with respect to the time—evolved pdf (see eq. (3.9)).
The operator P indicates a weighting and/or projection of the state vector at time t, to
be specified later. The expression obtained by (5.1) for t = t; and P = | defines the
analysis error covariance matrix V in agreement with (2.2) or (2.3). The problem is then
to determine the time—evolution of V under the dynamics (2.1).

Clearly, since S; consists of the product of deviations, namely, x; — E(x;), there will
be a time period over which the evolution of S; is governed by linear (tangent-linear)
dynamics. The length of this time period depends, among other things (see, e.g., Buizza
1995), on the (average) magnitude of x; — E(x;) at to. A geometrical interpretation of
this special situation may be given by assuming that V is used to define an ellipsoid in

n—dimensional space through the equation:
utVlu=c2, (5.2)

where ¢? is a positive constant. Then, in this .linear regime (and only in the linear regime),
the time—evolved counterpart of (5.2), obtained by replacing V by its time-evolved coun-
terpart, will also be an ellipsoid. However, the principal axes of the time—evolved ellipsoid

~will, in general, ché,nge in length and direction. When the tangent-linear regime is left,
nonlinear effects will add curvature and other distorting effects on the time—evolved ellip-
soid. '

An illustration of these ideas is given in Fig. 3, taken from Ehrendorfer (1997), which
shows the complete solution of the LE, namely the pdf, for the dynamical system (4.5)
with the parameters (4.6), at four consecutive times (each separated by one nondimensional
time step). In producing the results shown in Fig. 3, the initial pdf po(x) was taken as
multivariate normal with diagnonal covariance structure. The pdfs are presented in this

figure through the surfaces that separate values of p; larger than one (inside the surface)
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from those that are smaller than one (outside the surface); clearly, in this graphical display,
po appears at a sphere. Note that the definition of these surfaces implies that they are
not material surfaces. It may be seen from Fig. 3 that the time—evolving pdf is stretching’
rapidly during the first nondimensional time step, with little or no curvature becoming
apparent. At later times, nonlinear effects become important. ‘Note that these nonlinear
effects are fully included at all stages during the solution of the LE, but they are simply

negligible at initial times.
5.2. Theoretical aspects

(a) An optimization problem
The geometrical ideas discussed in the previous subsection may be used as guidance in
thinking about the design of schemes that are more efficient than simple random sampling,
in order to learn about the time evolution of the pdf.

Under the assumption that perturbations are governed by tangent-linear dynamics

(see, eq. (4.15)), the tangent-linear equivalent to (5.1) becomes:
S{* = PM,VM; PT, (5.3)

which will be called the tangent-linearly approximated forecast error covariance matrix
(see also, Ehrendorfer and Tribbia 1997; note that SiT is equal to V for t = 0 and P = I).
It is assumed that V is symmetric and positive definite (and consequently invertible); both
properties are natural for a covariance matrix. From eq. (5.3) the geometrical argument
made in the previous subsection concerning the deformation of ellipsoids becomes also
clear.

One possible approach to predicting the forecast error covariance matrix efficiently is
to study the set of vectors that evolve into the eigenvectors of S;F L. Guided by this idea,

the following maximization problem is considered:
. T ‘
max J(zg;t) = (PMtzo) (PMtz()) subject to: zgv_lzo =1, (6.4)
Zg .

where zg is a perturbation of suitable physical dimensions to be propagated by the tangent—
linear model M; (see (4.1), (4.3), (4.14)). The solution to (5.4) is the eigenvector associated
with the largest eigenvalue of the eigenproblem (see, e.g., Mardia et al. 1982):

VMIPTPM,zo = Azy  subject to: ziV 'z =1. (5.5)

The set of vectors Zy solving (5.5) will also be referred to as initial singular vectors (SVs).
Given the solution to (5.5), it is evident that the set of time-evolved vectors defined by:

Z, = PM,Z, (5.6)
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@) (b)
Y Y
X X
(c) 7 (d) 7
X

Fig. 3. The solution of the Liouville equation for the dynamical system (4.5), plotted
in the schematic way described in section 5.1, at time increments of one nondimensional
time step (from Ehrendorfer 1997). The initial pdf is Gaussian, with diagonal covariance
structure.
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is the set of eigenvectors of S;H‘. This may be seen immediately, since applying PM; to
(5.5) results in:
PMt(VM;F PTPMtZO) = PM; (ZOA) , (5.7)

which is the same as (using (5.3)):
STz, = Z,A. (5.8)

The orthogonality relation of the time—evolved SVs Z; follows from the orthogonality re-
lationship of Zy:

. |
77z, = (PMtZO) (PM.Zo) = ZT MIPTPM,Zy = ZF V' ZoA = A, (5.9)
R ——

where the equality of the underbraced terms follows from (5.5). Consequently, by (5.8)

and (5.9), the reconstruction of S'tr L through its set of eigenvectors is given by:
STL — z,AZ;' = 7,27, (5.10)

since Z; = AZ;'. Particular attention must be given to the way in which the evolved SVs
enter eq. (5.10), as a result of their normalization (5.9). It is of interest to note that (5.9)

written in the form:
ZTZ, A =1 (5.11)

implies that the time—-evolved SVs satisfy:
zF(sTH) 'z, =1 | (5.12)

which is immediately seen (from (5.10)) by noting that Z; is also the set of eigenvectors

to the inverse of S; -

(ST 'z, = z,A71 (5.13)

Eq. (5.8), or (5.10), shows that the time-evolved SVs are the eigenvectors of the forecast
error covariance matrix defined in (5.3). Assuming that the set Z; is ordered corresponding

to the associated eigenvalues A; (from largest to smallest), it is evident that the fraction

of total variance v;f% in STL accounted for by the first £ vectors Z;, at time ¢, is given by:

k k

vpy = [trace( (i)~ Z (Zj: )_IZ)\Z-. (5.14)
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(b) A remark on the eigenstructure of covariance matrices

It is at this point important to consider briefly the following dimensional argument relevant
when one tries to determine the eigenstructure of a covariance matrix. Consider a state
vector consisting of (for simplicity) only vorticity and temperature components (assumed

to be measured in s~ and K). In that case the set Zy, as well as the set:
Z, =M, Z, (5.15)

consists of vectors carrying these dimensions (it is assumed that the tangent-linear model
M does not change dimensions). The set Z; is the set of evolved SVs Z;, as defined in (5.6),
without the final norm applied. Now, it becomes obvious that in order to pose a physically
meaningful problem in (5.4), P must be chosen such that the different physical units (s™!
and K) of Z; are appropriately converted into a physically meaningful quantity (e.g.,
energy per unit mass). In the present example, this can be achieved, for example, through
a diagonal matrix P with entries of dimension m (length) and ms~*K~!, respectively. If
this is done, then the vectors in Z; (see (5.6)) possess the same physical unit (velocity
in the present example), and J , as well as all entries of S;H‘ possess the same physical
dimensions (energy per unit mass in the present example). Note clearly that the entries
of V do not possess the same physical units, as it is defined as the covariance matrix of
the state vector. Note also that this property of V makes the constraint in (5.4) purely
nondimensional. This necessity to account for different physical units in the state vector
in the formulation of J can also be understood more clearly by considering directly the
“eigenproblem (5.8), asking for the eigendecomposition of S;FL. There it is seen immediately
that this eigendecomposition can only be physically meaningful if the entries of S;F L all
have the same physical units, which is, in view of the definition (5.3), only achieveable
it P carries the correct dimensions. This argument becomes even clearer by noting that
the trace of S~ is equal to the sum of its eigenvalues (see (5.14)), which can only be
achieved (in a physically meaningful way) if the elements (on the diagonal) of S]% have
the same unit. In a more abstract sense, the problem can be summarized by saying that
one cannot ask in a meaningful way for the eigendecomposition of a covariance matrix of
different variables, since such an éigendecomposition depends always on the units used for
measuring the variables. For example, it is not meaningful to ask for the eigenstructure of
V (note that (5.8) simplifies to this question for M; and P both taken identity), because this
amounts to asking, in the present example, for the eigenstructure of a matrix with entries
of 72 (vorticity variances), K? (temperature variances) and s~'K (vorticity-temperature

covariances).
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Obviously, this problem has been recognized before. Trefethen and Bau (1997) state
that eigenvalue problems make sense only when the range and the domain spaces are the
same (which amounts to ensuring dimensional correctness as outlined above). The problem
is also referred to as the lack of scale-invariance when considering covariance matrices in
multivariate statistical problems (Mardia et al. 1982), where it may be interpreted as the
dependence of the eigenstructure of a covariance matrix on the units.in which the variables
are measured. Similarly, Wilks (1995) points out that it is important to preconsider the
physical units used to measure the variables enteriﬁg a principal component analysis due

to the effect of these units on the covariance matrix.

Summarizing, it is unavoidable to take care of the physical dimensions of the variables
properly, in order for the eigenproblem (5.8) to be meaningful (i.e., for the eigenvalues to
have meaningful physical units). Or, stated differently, as soon as the eigenstructure
of a covariance matrix is considered, a norm choice must be made, and it is made —
either explicitly or implicitly — as soon as the eigenstructure is computed. In the above
example, when P is correctly considered, the eigenvalués appearing in A in (5.8) also have
dimension of energy per unit mass. In a univariate context (i.e., only one variable, for
example, vorticity) no dimensional problems occur (as measuring vorticity in different
units will not qualitatively change the solution to the eigenproblem (5.8)). However, one
still has to consider the possibility of giving different relative weights to the components
of the (vorticity) state vector. Clearly, in the above multivariate example of vorticity and
temperature, P may still be set to identity, but the computed solution in this case does then
in effect amount to assuming that P has been taken diagonal with entries of 1s and 1K1
respectively (or any other dimensional or nondimensional multiple thereof). Consequently,
if the outlined dimensional problem is disregarded in this way, the eigenproblem (5.8) can
still be solved numerically, but then one is implicitly assuming that units of vorticity and
temperature variances can be added (in the above example). Clearly then, the solution

will change, if temperature is measured instead in degrees Fahrenheit or in centigrades.

Note, however, that it is always possible to compute a dimensionally correct square—
root of a covariance matrix (e.g., V), or its dimensionally correct inverse even in the case
when its entries do have different physical units. If the square-root is computed through
an eigendecomposition in this case, the computed square-root depends on the units used
to measure the variables. After this discussion, it is assumed from now on that the entries
of S;H‘ have the same physical units (as mentioned above that will always be the case in a
univariate situation; in the multivariate situation it may be achieved by proper specification

of P). To keep generality, the operator P has been introduced.
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(c) The optimization problem with My = |

In order to understand the nature of the eigendecomposition (5.8) more clearly, it is in-
structive at this point to consider the special situation that M; = I. In this case, by (5.3),
S;FL is just PVPT,Nand problem (5.5) reduces to the computation of the eigenvectors of

VPTP denoted as Z and associated eigenvalues A:

N

= z . =T
VPTPZ =ZA  subject to: Z V'Z=l. (5.16a, b)
Eq. (5.16) is the special case of (5.5) for no dynamics present, and it leads directly to the

determination of the eigenstructure of the unevolved covariance matrix:
PVPTZ =ZA, (5.17)

where: )
Z=PZ (5.18)

corresponds directly to Z; in (5.6), specialized to this situation, but has been denoted by
a different symbol here (note similarly that Z corresponds to Z; in the general situation).
Clearly, in analogy to (5.9) and (5.10) it is true here that:

7"7-K and PVPT=2Z". (5.19a, b)

(d) Some additional remarks
Before proceeding, some additional remarks are made with the intention to illustrate some
of the foregoing developments.

(i) First, note that — in the case of active dynamics, My # | — the eigenvectors y4
of the unevolved covariance matrix (in the dimensionally correct, see above, form (5.17))
are not the initial SVs Zy, since the initial SVs must satisfy (5.5), and the set Z must
satisfy (5.17). Consequently, it is clearly seen that the eigenvectors Z; of StTL are not the
time—evolved eigenvectors of PVPT.

(ii) However, as the optimization time ¢ becomes smaller, the set Z; is approaching the
set 2, as S;H‘ is approaching PVPT, and, at the same time, Z, is approaching Z. Thus,
the analogy of (5.19b) and (5.10) suggests to consider the comparison of the relevant
eigenstructures, namely, A and A and associated eigenvectors Z and Z,, as an indicatation
of how far the dynamics M; have removed S;ﬂ‘ from its equivalent, PVPT, at initial time.
Note that this consideration shows that it is, in particular, probably not adequate to

compare the initial SVs Zy with the time—evolved SVs Z; because the former are not the
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eigenvectors of a covariance matrix, whereas the latter are. In particular, in analogy to

(5.14), the initial fraction of variance, accounted for by the first k vectors Z, is defined as:
k ~
v,0 = [trace(PVPT)] - Z Ai - (5.20)
i=1

(ili) At this point it becomes most clear that the two normalization constraints in
(5.16b) and (5.19a) are equivalent, in the sense that either one of these two when taken
together with the eigenvector equation (5.17), and the definition (5.18), implies the other
one. In other words, given that Z satisfies eq. (5.17), plus the normalization (5.19a), then

it follows immediately that Z satisfies (5.16b), rewritten conveniently as:
~ ~1.
z' (PVPT) Z=1 (5.21)

On the other hand, given that Z satisfies (5.17), together with (5.21) (which is (5.16b)),
then (5.19a) follows. Eqs. (5.16b) (or, equivalently (5.21)) and (5.19a) are just two different
ways to write the normalization constraint for the eigenvectors Z of PVPT, defined through
the eigenvector equation (5.17). Note that (5.19b) follows immediately, given, for example,
(5.17) and (5.19a). The very same remarks apply to the normalization of the eigenvectors
Z, of S/ as may be seen from equations (5.8), (5.9), and (5.12). It is emphasized that
this remark implies that one may solve (5.17) directly (subject to, e.g., eq. (5.19a)) which
leads directly to Z, and the representation (5.19b); then, (5.18) may be used to determine
Z.

Note that this approach, as just outlined, is computationally different from the ap-
proach that is commonly used to arrive at the eigenstructure of S7~ in (5.8). Here, first
the initial SVs, namely, the set Z; is determined, by solving (5.5) (see also below; this
amounts to solving (5.16) in the above context), from which Z;, defined in (5.6), is de-
rived; this set Z; satisfies automatically (5.9), (5.10), and (5.12). Clearly, in view of the
foregoing comments, this latter procedure is entirely equivalent to directly solving for the
eigenstructure of S7~ defined in (5.8), subject to (5.9). One of the reasons for not pro-
ceeding in this way in the context of computing singular vectors in atmospheric models is
that one is then faced with the difficulty of deriving Z; from Z; by (5.6), as this requires
inverting M;. And, in the context of computing singular vectors in atmospheric models, it
is of primary interest to have the initial SVs Z, available (see also below).

(iv) Eq. (5.17) shows the specialization of (5.8) to the situation that M; = 1. Clearly,

one does not necessarily have to consider the eigenstructure of V in the same norm as the
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eigenstructure of MtVM;F, which is the case in (5.17). To introduce this generalization,

(5.4) is generalized to:
T 1 T 1 T 1
max J(z0;t) = (PM,P~ on) (PM,;P“ on) subject to: ziV lzg=1, (5.22)
Zg

where Q is a norm-defining operator with properties analogous to the properties of P,
leading directly to the eigenstructure of the time-evolved covariance matrix in the following
form: ‘ . ’ ,

(PMtP—lq)v(PMtP“lq) Z, = Z,A, (5.23)
where the relevant eigenvectors Z; are obtained from the solution to (5.22), called Zg, as:

Z, = PM,P'QZ,. (5.24)

Equations analogous to (5.9) and (5.10) also hold. For the choice Q = P, egs. (5.22) -
(5.24) simplify to the description following eq. (5.3). However, for Q # P, it may be seen
that when M; = | is taken in (5.23), the initial covariance matrix V is considered in the
norm Q (see eq. (5.17)). However, this generalization will not be considered here further,
but the future investigation of this generalization might be of interest.

(v) Referring back to remark (i), it is noted that even though the initial SVs £y are
not the eigenvectors of V, they may still be used to reconstruct V, because, using the

constraint in (5.5), it may be seen immediately that it is true that:

-1

ZoZT = Zo(V71Z0) T = ZoZg (VY T = V. (5.25)

Note, however, that this representation of V is, at least potentially (and also depending
on the length of the optimization time interval t), quite different from its reconstruction
through its eigenvectors as expressed in (5.19). Eq. (5.25) may also be quite different from

an analogous form derived from (5.16b):
V=27 . (5.26)

Nevertheless, the representation (5.25) has the highly appealing property that its (tangent—
linearly) time—evolved counterpart is the eigendecomposition of STT (see (5.3), (5.6), and
(5.10)). Consequently, if interest if focused on the forecast error covariance matrix st
the decomposition (5.25) of V should be of primary interest rather than an analogous
decomposition based on the eigenstructure of V (such as, e.g., (5.17), (5.26)). Note in this

context some similarities and differences to the approach suggested by Bouttier (1996). In
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a sense then, the decomposition (5.25) is somewhat similar to a Cholesky decomposition of
V (e.g., Trefethen and Bau 1997), the difference being, of course, that Zj is, in general, not
lower—triangular (or, upper—triangular). The decomposition in (5.25) will be considered i
more detail in the next subsection.

(vi) It is noted for completeness that the solution to (5.5) may be obtained by solving

the following standard eigenproblem:
T
(Pm.v/ 2) (PMtV1/2> Go = \gp with: 2T=1, (5.27)
G

followed by the backtransformation:
zo = V/?z,. (5.28)

The computation (5.27) and (5.28) yields the initial SVs Zy, as computed from Zg, ex-
plicitly. It requires the availability of the square-root of V. Alternatively, one may solve
(5.8) directly for Z, (see also the comments made in (iii)); in this case, the set Zy does
not become explicitly available. However, this latter approach is leading directly to the
eigenstructure of StTL. It requires, however, the availability of V either explicitly or in

operator form. _
It is at this point that the term singular vector becomes most obvious, since now the

singular value decomposition (e.g., Golub and Van Loan 1989, Trefethen and Bau 1997;
see, also, Chu et al. 1997) of G; may be written as:

G; = (ztA—1/2)A1/22§, | (5.29)

showing that Z, are the right singular vectors of the norm-augmented tangent—linear oper-
ator G, with the relevant time evolution given by (5.6), and the “standard” normalizations
(see (5.9) and (5.27)):

(ztA—l/Z)T(ztA—1/2)=| and 2,20 =1. (5.30)

Now, clearly, the right singular vectors Zo and the squares of the singular values, A'/2,

determine the eigendecomposition (5.27):

| GFG, = 29AZ,. (5.31)
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5.3. An SV-based Monte Carlo technique

Given information about initial uncertainty in the form (2.3), a large sample consistent
with this initial uncertainty may be evolved in time to estimate the time-evolved statistics
according to (3.10). Generating the initial realizations requires knowledge of the initial
pdf. If only the first two moments are known, a possible (and probably most reasonable)
choice is the normal pdf, as written in eq. (2.2). Such a choice is probably quite reasonable,
if only the first two moments are available (no other error characteristics known), in view
of the Central Limit Theorem. A Monte Carlo sampling technique based on the normal-
distribution assumption, as well as on the initial SVs defined in section 5.2 is considered
here.

Under the assumption that the vector p is multivariate standard normal:
p ~ Na(0,1), (5.32)

which implies that the components of p are mutually independent and univariately nor-
mally distributed (and vice versa; see, e.g., Rao 1965), the random vector q defined
through:

a=x{+ VY% (5.33)
is normally distributed with parameters as indicated in (2.2). Here vi/2 represents a
square-root of V. Such a square-root is not uniquely defined, but will always exist since
V is positive definite.

The SV-based Monte Carlo technique suggested here is based on the square-root
representation of V described in eq. (5.25). Given this representation of V, it is clearly
possible to choose as the square-root of V its decomposition by the initial SVs Zy3. More
specifically, if only the first k£ SVs, collected in the matrix Z(()k), as defined by the problem

(5.4), are available, the random vector q(*) is constructed in analogy to (5.33) as:
q® = x5 +z¢¥p, - (5.34)

which amounts to an approximation of the full initial covariance structure in the following

form:
v =z @z (5.35)

The matrix Z(()k) is n x n and contains the k leading SVs in its first & columns, with the
remaining n — k columns being zero:
Zék) = z(()l) 'z(()k) 0 ... 0}. (5.36)
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Clearly, (5.34) becomes eq. (5.33), just as (5.35) becomes (5.25), in the case that all n
SVs are available to define a square-root of V. Clearly, for the specification (5.34), the

covariance of q(*) is:

cov(q®) = (z{)(Z{)T = v, (5.37)

which when evolved tangent-linearly in time, see eqs. (5.3), (5.6), and (5.10), leads to the
approximation of gt by its first k eigenvectors. However, here q®) represents a realization
from the initial pdf that can be evolved nonlinearly, which will clearly be beneficial as the
tangent-linear approximation becomes less valid. However, this choice of sampling from
the initial pdf hides in a sense the trailing SVs from the covariance structure, so that the
vectors q*) obtained in the sampling process only “see” the part of the initial covariance
structure that, when time evolved, contributes most to STL. n a sense then, sampling
based on (5.34) represents an attempt to combine the appealing properties of the SVs with
a possible way to overcome limitations posed by tangent-linear restrictions, and it exploits
explicitly the fact that the initial SVs evolve into the eigenvectors of ST by writing the
initial covariance in terms of the initial SVs (rather than in terms of the eigenvectors of the
initial covariance V; recall that these eigenvectors and the initial-time SVs are different
— see 5.2.d(i)). Note that V(k), the covariance structure used for the sampling process, is
rank-deficient (or, singular) for & < n, but that it is still non—negative definite; this rank
deficiency is not considered to be an important limitation at this point at all (see, e.g.,
Rao (1965) for the definition of the multivariate normal pdf in this case). Note also that in
the tangent-linear regime the technique clearly simplifies to the tangent-linear prediction
of ST,

The rationale for the SV-based MC technique is similar to the generation of initial
perfurbed states as carried out at ECMWF (see, e.g., Molteni et al. 1996). The matrix-
vector product ng)p in eq. (5.34) may be interpreted as performing the linear combination
of initial SVs and the subsequent rotation. Note that in the expression (5.34) both steps
are carried out simultaneously.

So far the description of this proposed technique has been perfectly general. However,
there is an apparent problem with scaling the initial variances, since the expression (5.35)
will be clearly “variance-deficient” when compared to the full initial variance structure, in
the sense that the variance represented by V%) i5 smaller than the variance represented
by V(™) 1In order to resolve this issue in such a way that the procedure coincides with the
full initial covariance procedure for k = n, a scaling is suggested here that is based on the
comparison between the initial total variance explained by the first & initial SVs, denoted

v} o, and the initial total variance carried by all initial SVs, denoted vt o (relevant spectra
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are shown in section 5.4). Clearly, as discussed in section 5.2, the assessment of these
total variances again requires consideration of a metric for the simultaneous treatment
of different variables. In view of the discussion in section 5.2 (see, e.g., egs. (5.14) and’
(5.20)), this metric is taken to be P. | |
Given k initial SVs, the total variance contained in the matrix V(k), denoted v,ﬁ,o may

be directly computed from the set Zék) by noting;:

vio= trace(P\l‘(vk)PT) = tface(P(ng))(ng))TP?> =

: - )
- tra,ce((Pz(’“) (PZ('“))T> ZZ((PZ(”) ) = || Pz |12, (5.38)
i=1 I=1 .
where the Frobenius matrix norm of PZg“) has been introduced. Note that it is true
for the Frobenius norm of any matrix A that || A ||2= trace(ATA) = trace(AAT) (e.g.,
Parlett 1998, Trefethen and Bau 1997). This property is also evident in eq. (5.38). Taking
equation (5.38) for the case k = n (considering the situation that all n initial SVs are
available) gives the total initial variance as follows:

vt o = trace(PVMPT) = trace(PVPT) = trace(PZoZI PT) =

n,0 —

_trace(PZO (PZo) ) ZZ((PZO Zl) z‘|| PZo |2 . | (5.39)

=1 [=1

Now, these equations show clearly that the factor o defined by:

<
?g-ﬂ-ﬁet-

0 > 1 (5.40)
70 ‘

Q
Il

v

is the factor by which the total variance in V is larger than the variance in v (both
in the metric P). Note that this factor goes to one, as k becomes larger. To make the
truncated variance v,”c’0 equal to the full initial variance it seems therefore possible to define

a rescaled set of initial SVs as: = T
- (k
2 = (ar)zl, . (5.41)

where the exponent s is intended to take on only values of zero and one. Using (5.40) in
(5.41), together with the properties of the Frobenius norm, and (5.38), it may be shown
immediately that, for s=1: ' ‘ ' ’ o

t

t |
& Un,0
1P25” 1= o | P2 |3 = 0k, = vho, (5.42)

: k,0 ) ‘
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indicating that building the truncated initial covariance matrix v () through the scaled set
2((,k) (see eq. (5.35)) leads to an initial covariance structure containing the full total initial
variance. Note that this scaling process does not require the availability of all SVs, but it
does require an estimate of vfl,o. In view of (5.41), eq. (5.34) is rewritten in the following

form:
~ (k&
(“1(’“) = x§ + Z(() )p = xg + (\/as)Zg“)p, (5.43)

which, in analogy to (5.37), shows that the covariance structure is defined by vk,
cov(@®) = o*(Z{)(Zp")T = o'V, (5.44)

but that, in addition, for s = 1, the total variance level carried by q®) is the same as in
the full initial covariance V (see (5.38)):

trace (P cov(§@®) PT) = atrace PV®PT) = auvf g = o} ;. (5.45)

The use of (5.43) to generate initial perturbations will produce perturbations consis-
~ tent with the initial covariance structure as assessed by the first k SVs (see (5.35)). Note
that the rescaling process, as outlined above, is conservative in the sense that for both
choices, s = 0 or s = 1, it approaches the correct variance level when k approaches n: for
s = 1, the variance level is always kept precisely at v}, 5, whereas for s = 0, ”%,0 is (slowly)
approached (from below) as more and more SVs are included. However, for s = 1, the
rescaling might be a bit dangerous insofar, as it gives some over—proportional attention
to the fastest—growing initial SVs, which might be expected to lead to an overestimation
of the final variance structure when the realizations §*) are time-evolved. Alternatively,
one may consider taking s = 0 which will not do any scaling at the initial time. Note that
both approaches, namely s = 0 and s = 1 become identical as k& approaches n, since in
this case a tends to one. In section 5.4, results are presented for no rescaling, s = 0, since
the overemphasis of the first SVs might not be appropriate.
In conclusion it is noted that this rescaling procedure outlined above reflects again

the basic question of how to properly scale initial perturbations in the nonlinear regime.
5.4. Results

In this section some of the ideas presented in sections 5.2 and 5.3 are illustrated within
the framework of the quasigeostrophic (QG) atmospheric prediction model developed by
Marshall and Molteni (1993). The case studied here in detail is the 48-hour period begin-
ning on 17/02/1997/1200GMT. Results for a second case, 03/01/1994/0000GMT, will be
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mentioned briefly. In the formalism introduced in the previous chapters the state variable
here is vorticity at the three model levels (more precisely, the spectral expansion coeffi-
cients of vorticity). Thus, all covariance matrices are also defined in spectral space and
are valid for the spectral components of vorticity. It might be mentioned for completeness.
that the state variable is taken to be vorticity and not the deviation of quasigeostrophic
potential vorticity from planetary vorticity (Vortieity and this deviation are assumed to be
related through a linear operator that can be inverted). Since the state vector consists of
only one physical variable, the dimensional problems associated with the computation of
the eigenstructure of covariance matrices (as described in section 5.2.) do not appear with
their full complications. The choice P = | is therefore a valid choice in this context (see
eq. (5.3)).

First, the influence of different norm specifications on the properties of SVs is investi-
gated. SVs were computed for five different combinations of initial and final norm for the
two cases (see Table 1). In order to refer to these five combinations the third letter of the
internal identifier will be used. In experiment (a) (klnetlc energy at both initial and final
times) the problem described by eq. (4.17) is solved, where CTC now denotes the kinetic
energy metric. In experiments (c), (d), (g), and (h), problem (5.4) was solved; here in (c)
and (g), the operator PTP again denotes the kinetic energy metric, whereas in (d) and
(h) PTP is taken as identity. In solving problem (5.4), two different specifications for the
initial covariance matrix V were chosen: in (c) and (d) Vo denotes a “flat” initial covari-
ance structure corres.ponding to the background formulation for vorticity in the integrated

forecast system (IFS) at ECMWE. In (g) and (h) V4g was used which is a tangent-linear
| prediction of Vg started 48 hours prior to the beginning of the optimization time interval
(in carrying out this tangent-linear prediction the QG model was linearized around a basic
state trajectory produced with the QG model for the relevant 48 hour time interval).

As mentioned above,v in all experiments described here the dimensional variable zg
(see (4.17) and (5.4)) is vorticity (in. spectral representation) at the three levels in the QG
model. As a consequence the initial covariance matrix V (also valid in spectral space) has
dlmensmns of 572 and the dimensional problems mentioned in section 5.2b do not occur
with their full complications. More precisely, the choice P = I is valid in this context; taking
P +£ | will amount to applying different Weights (all of the same physical dimension) to
the state vector. In any of the pictures further below, the display of perturbations to this
state variable (like eigenvectors and singular vectors) is as follows. The state perturbation
7 is first scaled such that its kinetic energy is one (i.e., zg TCTCzy = 1). Then, this scaled
perturbation is converted (from vorticity) to (dimensionless) streamfunction and displayed

in physical space (the reason for this latter conversion {rom vorticity to streamfunction is
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Table 1. Amplifications for the five leading SVs in terms of kinetic energy for various
combinations of initial and final norms. In the head of each column the initial and the
final norms are indicated, as well as the internal experiment identifier. The optimization

time interval is 48 hours.

case 1: 17/02/1997/1200GMT..

KE/KE "V /KE Vo/I V4s/KE Vis/I

CTaa CTcb C7db C7ghb - C7hb
SV 1 151.31 79.50 78.37 18.28 18.81
SV 2 149.12 71.47 71.11 20.24 - 21.38
SV 3 138.75 50.64 45.11 19.64 17.51
SV 4 117.32 - 40.63 35.79 - 17.10 14.41
SV 5 104.32 34.37 31.66 10.07 11.37
case 2: 03/01/1994/0000GMT.

KE/KE Vo /KE Vo /I  Vy/KE Vayg/l

H7ab H7cb H7db H7gb H7hb
SV 1 98.04 .  31.78 30.43 6.94 6.78
SV 2 80.75 31.23 24.20 7.42 5.77
SV 3 S 67.100 2719 24.17 7.72 - 4.89
SV 4 55.82 25.45 24.30 482 741
SV 5 52.00 23.80 19.08 6.43 5.80

that it produces smoother fields). The fractions contributed by a given perturbation field
at each model level to the normalized value of unit kinetic energy are printed in the first
line of each subpanel (ordered from top to bottom). Dimensionless variables are obtained
by using the radius of the earth as length scale, and (2Q)~! as time scale, where € is the

angular speed of rotation of the earth.

In addition to the results of Table 1, the three leading SVs are shown in Figs. 4
(KE/KE), 5 (Vo/KE), and 6 (V45/KE), in the format described above, for both initial
and final tlmes Note that the final SVs plotted here are the fields Zt , defined in (5.15)
(i.e., if the final norm is different from the 1dent1ty, it was not applied after time—evolving
the initial SV). For the amplifications of these structures reference is made to Table 1. It
is of 1nterest to note that the amphﬁcatlons decrease as the 1n1t1a1 norm is changed from
kinetic energy to Vo and then Vg (experlments a, ¢, g). The reason for this result was
not analysed in detail, but it could be that with a more structured initial constraint (i.e.,

V4g) there is less potential for growth.
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Fig. 4. The leading three singular vectors for case 1 (i.e., 17/02/1997/1200 GMT) for an
optimization time of 48 hours computed with quasigeostrophic dynamics, at initial (left
column) and final (right column) times, at the three model levels. Panel (a) SV 1, (b)
SV 2, (c) SV 3. Initial and final norm is kinetic energy. For the scaling convention of the
SVs refer to section 5.4. Level contributions to unit kinetic energy are printed in the first
line of each subpanel.
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Fig. 5. As Fig. 4, except for using V to define the initial norm.
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Fig. 5. (c). : R
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Fig. 6. As Fig. 4, except for using Vg to define the initial norm.
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Fig. 6. (b).

65



EHRENDORFER, M.: PREDICTION OF THE UNCERTAINTY OF NUMERICAL WEATHER FORECASTS...

B _/EI
EN e Y ~

A =y

" ass0 107",

Fig. 6. (¢).

66



EHRENDORFER, M.: PREDICTION OF THE UNCERTAINTY OF NUMERICAL WEATHER FORECASTS...

In Fig. 7, the variances in physical space implied by Vs valid for case 1 are displayed
at the three model levels. The structure that is apparent is a result of the characteristics of
the flow. Note that the fields at the three model levels are drawn with the same coutours,
and that the contours are logarithmically equally spaced (the factor in going from one
contour to the next is 10°-1%). All other subsequent variance maps are plotted with these

10 5—2 whereas the total

same contours. The total variance contained in Vg is 8.301 x 10~
variance contained in Vg is 3.301 x 10712 572, Note that it can be seen from Fig. 7 that
the variance decreases from the top to the bottom levels (the contributions by each level to
the total variance are printed in the first line of these and all subsequent variance maps).

Experiment C7hb will now be considered in some more detail. In this case the oper-
ator P is the identity, so that the solution to (5.5) leads directly to the eigenstructure of
MV,sM™. Due to the fact that the only variable considered here is vorticity, no dimensional
problems are occuring,} and it is possible to look directly at the eigenstructure of initial and
final covariance matrix. In Fig. 8, the spectra A (eq. (5.17); the initial spectrum, dashed)
and A (eq. (5.8); the final spectrum, solid) are plotted both in an absolute manner (panel
a; plotted are the logarithms of the eigenvalues), and in a cumulative manner (panel b).
It is noted that the spectrum becomes steeper during the time evolution. Note that in
panel (b) the two curves are relative to two different total variances (namely, 8.301 x 10710
s~2 for the dashed curve, see above; and 43.841 x 10710 572 for the solid curve). Fig. 8b
shows that about 200 eigenvectors of V4g are needed to account for approximately 80% of
the variance contained in Vg (dashed curve), whereas 200 eigenvectors account for more
than 90% of MV,sM™T (solid cﬁrve). It must be noted that this large fraction of variance
is partly related to the loss of accuracy of the tangent—linear approximation (see below);
this loss of accuracy will become apparent when comparing the value 43.841 x 1019 572
with the respective value obtained by nonlinear integrations. '

As pointed out in section 5.2, it is, in addition to the spectrum of Vs, also of interest
to look at the eigenvectors of Vg (taken as the initial covariance in the present experiment
C7hb). The first three eigenvectors (i.e., the structures Z from eq. (5.19)) are shown in Fig.
9: they account for 4.17%, 3.44%, and 3.32% of the total initial variance of 8.301 x 10~1°
s~2 (note that this information is also contained in the dashed line in Fig. 8b). These
eigenvectors have been obtained by solving (5.17) with P = . Note that eigenvectors 2
and 3 have similar structures with dzﬁerent 81gns over the east coast of Asia, but the same
sign gver the Atlantic. ' ' ‘

The eigenvectors of MV48M (i.e., the evblved SVs of experiment C7hb; i.e.; the
structures Z; defined in (5.6), (5.8)) are shown in Fig. 10, together with the initial SVs

(left columns). Note that in this case a comparison of the structures Z; (Fig. 10, right
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Fig. 7. The variance structure described by Vg at the three model levels. Vg is the result
of a 48-hour tangent-linear quasi-geostrophic covariance prediction from an isotropic and
homogeneous covariance structure at 15/02/1997/1200 GMT. Note that the same contours
are used at the three levels, and that contours are logarithmically equaily spaced (the factor
between two contours is 10%18). Level contributions to total variance are printed in the
first line of each subpanel.
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Fig. 8. The eigenspectra of Vyg (dashed) and MV,sM7T (solid) plotted (a) in terms
of their logarithms, and (b) in a cumulative manner. M denotes the tangent-linear
quasi—geostrophic propagator (see eq. (4.14)) valid for the 48-hour interval starting at
17/02/1997/1200 GMT.
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columns) with the structures plotted in Fig. 9 yields insight into how much the initial
covariance has changed (by assessing how much its eigenstructure has changed). It is
noted that the eigenstructures are quite different: especially the second and the third
eigenvector of V45 (Fig. 9b, ¢) are quite different from the second and third time-evolved
SV (Fig. 10b, c¢). The fraction of variance of MV M7 accounted for by the first three
time—evolved SVs is 13.00%, 12.00%, and 9.5%, respectively (this can also be seen from
the solid line Fig. 8b).

Whereas the final SVs, shown in Fig. 10 (rightlcolumns), may be compared with the
eigenvectors of Vg (shown in Fig. 9), the SVs of Fig. 10 (experiment C7hb) may also be
compared with the SVs shown in Fig. 6 (experiment C7gb; these two experiments differ
only by the choice of the final norm; see Tab. 1). Note that by the plotting convention
the final norm is not applied, since the fields Z, are plotted. Quite interestingly, the first
SVs are quite similar both at initial and final times (Fig. 6a and 10a), indicating that the
final norm does not seem to matter too much for the fastest—growing structure (similar
behavior was also found in a primitive-equation model; J. Barkmeijer, pers. comm.). The
subsequent structures (i.e., SVs 2 and 3) are more different, as is necessary since two
different optimization problems are solved (i.e., two different final norms).

Given the eigenvectors (i.e., time—evolved SVs) of ST" in experiment C7hb (see Fig.
10), it is now clearly possible to reconstruct S™ see eq. (5.3), by a given number of
SVs, through eq. (5.10). The result is shown in Fig. 11, for (a) 10 SVs, (b) 100 SVs, (c)
1449 SVs, with 54.9%, 90.4%, and 100% of explained variance, respectively (see also solid
curve in Fig. 8b). Again, the variance fields are plotted at the three levels, with the same
contour intervals as used in Fig. 7. It is apparent that the fields are quite noisy, and that
they are bigger by a factor of about five (~ 43.841 x 10710 §72/8.301 x 10719 s72) than
the initial variances (see Fig. 7). Also, it can be seen that the reconstruction of these
variance fields is quite rapid (i.e., the general pattern is already visible with 10 SVs) and
that adding more SVs leads to somewhat smoother variance fields.

In order to assess the possibility of predicting S™ through the leading time-evolved
SVs, the forecast error covariance matrix S; as defined in (5.1) was computed through a
Monte Carlo experiment (for P=I, in analogy to experiment C7hb). This computation
was carried out by taking the initial pdf as normal (see also section 5.3), with covariance
structure V45 and a given mean x§ (this mean is the same as the starting point for the
basic state integration used to define the tangent—linear model). The covariance structure
was then estimated from a time-evolved (over 48 h = the optimization time interval in
the present experiments) random sample of size M from this initial pdf according to eq.
(3.10). The results obtained for M = 5000 and M = 10 are shown in Fig. 12a, b,
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Fig. 9. The three leading eigenvectors of Vyg (i.e., the structures Z in eq. (5.19)). The

explained variances are (a) 4.17%, (b) 3.44%, (c) 3.32%. The plotting convention is as in
Fig. 4. ‘
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of MV,sM™. Plotting convention as in Fig. 4. Panel (a) SV 1, (b) SV 2, (c) SV 3.
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(a) 10, (b) 100, (c)
1449 time evolved SVs, Z; (see, eq. (5.10)), shown in terms of variance fields at the three
model levels. Plotting convention as in Fig. 7.
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Fig. 11. (c).
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respectively (again plotted with the contour interval chosen for the variance plots in Fig.
7 and 11). Note that the M = 10-field is quite noisy, but is already picking up some
of the structure present in the “true” forecast error covariance field shown in Fig. 12a.

ST shown in Fig. 11a

Note that the same remark applies also for the reconstruction of
(with 10 SVs). It is noted in particular that the nonlinearly estimated total final variance
(with M = 5000) is 17.956 x 10719 s=2 indicating a total nonlinear variance growth by
about a factor of 2 (the initial total variance is 8.301 x 10710 g=2

the tangent—linear total variance amplification by a factor of about five is unrealistically

; see above). Thus,

large, and must be traced back to a rather inaccurate tangent—linear approximation (given
the optimization time considered here as well as typical initial perturbation sizes induced
through the consideration of the initial covariance structure Vg).

In the context of Fig. 12a it is noted that if in.an MC experiment the time integration
is carried out over a rather long time (e.g., 8 days), the final covariance structure becomes
quite independent from the parameter choices to define the initial pdf (2.2). Covariance
structures were computed for M = 5000 for an integration time of 8 days, and initial states
x§ for both cases 1 and 2. For both cases, the initial covariance structure was prescribed as
either Vy or V4g. The final covariance structures (not shown) are all quite similar, which is
thought to be a reflection of the forcing and dissipation terms applied in the QG model. In
these experiments, the total final variance levels were found to be between 18.141 x 10~10
s72 and 24.785 x x1070 572 (these may be compared with the values reported above for
48 hours).

Before proceeding, the reconstruction of S™ by a small number of SVs is shown in
Fig. 13 (at 500 hPa), for the situation that the tangent-linear approximation is more
accurate (experiment C7db) than in experiment C7hb. Fig. 13a shows the final variance
reconstructed with 10 SVs (see eq. (5.10)), Fig. 13b shows a Monte Carlo estimate (ob-
tained as described above) based on M = 10, and Fig. 13c shows a Monte Carlo estimate
based on M = 5000 (the optimization time is again 48 h). In this case, the tangent-linearly

2 compared to the nonlinearly estimated final

estimated final variance is 8.347 x 10710 s~
variance of 6.888 x 10712 s=2 (for M = 5000). Comparison of these numbers shows that
the tangent—linear approximation is now more accurate: consequently, prediction through
10 SVs (accounting for 23.79 % of the above tangent-linear final variance; Fig. 13a) is
approaching the result shown in Fig. 13c more closely. Note again, that the Monte Carlo
estimate for M = 10 shows some of the features present in panel Fig. 13c. Figs. 13d, 13e,
and 13f show the vorticity covariances of one grid point (located at the 500 hPa model level
at approximately zero degrees longitude, and 40 degrees northern latitude) with all other

grid points (in the Northern hemisphere at that model level), derived from the predicted
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a)

shown in terms of variance fields at the three model levels. Sample size of the Monte
Carlo experiment is (a) M = 5000 (left column), (b) M = 10 (right column). Plotting

convention as in Fig. 7.
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Fig. 13. Variance fields at the 500 hPa model level predicted through (a) 10 SVs, (b)
an M = 10 MC experiment, and (c) an M = 5000 MC experiment, for experiment C7db.
Panels (d), (e), and (f) correspond to (a), (b), and (c), respectively, but show the vorticity
covariances of one model grid point (at approximately zero degrees longitude and 40 degrees
northern latitude at the 500 hPa level) with ail other grid points at the 500 hPa model
level.
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— through either experiment C7db (Fig. 13d), or a Monte Carlo experiment with M = 10
(Fig. 13e), M = 5000 (Fig. 13f) — covariance structure. Here, it can be seen that the
covariance reconstruction through 10 SVs approaches the M = 5000 result quite closely
(as opposed to the M = 10 Monte Carlo result). ' |

Returning back to experiment C7hb, Figs. 14 and 15 give information about the
eigenstructure of the (nonlinearly obtained, M = 5000) forecast error covariance matrix
S;. Clearly, this covariance matrix S; may studied in a totally analogous manner to,
for example, V, for example, along eq. (5.17) (recall‘ that P = I here). Consequently,
Fig. 14 shows the spectrum of S;, and Fig. 15 shows its first three eigenvectors (note
that logarithms of the eigenvalues are plotted in Fig. 14a). This eigenstructure will
be referred to as the nonlinear eigenstructure. As a first step, the nonlinear (Fig. 14)
and the tangent-linear spectra (solid curves in Fig. 8) may be compared. Note again,
that the curve in Fig. 14b is drawn relative to the nonlinear total variance of 17.956 x
10710 572 (see above). Comparison of the solid curves shows the degree of nonlinearity.
Clearly, it takes somewhere around 600 nonlinear eigenvéctors to recover 95% of variance
in the nonlinear case, whereas the tangent-linear result indicates that only 200 time-
evolved SVs are needed. For example, the nonlinear variance accounted for by the leading
three eigenvectors of S; is 1.63%, 1.37%, and 1.18%, respectively (compare these with
the numbers given above for S;F L in the context of discussing Fig. 10). This comparison
illustrates to what degree the tangent-linear results may be misleading when compared to
the fully nonlinear situation. One may also directly compare the eigenvalues in the present
situation: the dashed curve in Fig. 8a (also referring to logarithms), and the solid curve
in Fig. 14: the steepness of the nonlinear spectrum is quite similar to the steepness of
the initial spectrum. The same comparison may be done for the eigenvectors: comparing
the nonlinear eigenvectors (Fig. 15) with Fig. 9 (the eigenvectors of the initial covariance
structure) shows how the covariance structure changes nonlinearly over time, in terms of its
eigenstructure. Similarly, comparing Fig. 15 with the time-evolved SVs in Fig. 10 shows
the degree of nonlinearity (in terms of the eigenstructure of the two covariance matrices)
which is quite substantial in the present situation.

' Clearly, Fig. 14 and Fig. 15 show the best that can be done in reconstructing S;
through its eigenstructure. A question that is then occuring naturally is: is there a way to
obtain the structures at initial time that are evolving into these eigenvectors of S; ? In the
tangent-linear context, this question is answered by the structures Zy obtained by solving
(5.5). In the nonlinear context obtaining the answer to this question may be extremely
difficult; this issue is discussed some more in section 6.

This section is closed by mentioning some preliminary results obtained with the SV~
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Fig. 14. The eigenspectrum of the nonlinearly predicted forecast error covariance matrix
of Fig. 12a (M = 5000), (a) in terms of logarithms of eigenvalues, and (b) in a cumulative

manner.
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based Monte Carlo technique described in section 5.3, for experiment C7hb. In eq. (5.35), |
the choices k& = 10, k¥ = 100 and k£ = 500 are made. As explained in section 5.3, it is
immediately possible to assess the fraction of variance accounted for by any leading subset
of SVs Zg“) as a function of k. The relevant cumulative picture is shown in Fig. 16.

1 as a function of k in a cumulative

In the notation of section 5.3, this figure shows o™
sense. Note that the (tangent-linearly) time-evolved counterpart of this figure is the
solid curve in Fig. 8b. Note in particular that — as pointed out in connection with
eq. (5.25) — this cumulative variance picture is quite different from the dashed curve
in Fig. 8b (representing the variance reconstruction of the initial covariance through its
eigenstructure); these curves are directly comparable, and are also normalized to the same
value, namely the total initial variance (i.e., 8.301 x 10719 s72; see also egs. (5.20), as well
as (5.38), and (5.39)). In the present case, the fractions for the above k values in Fig. 16
are 19.53 %, 57.76 %, and 87.94 % for the Z((,k) reconstruction (5.35) of Vyg. The respective
numbers for the eigendecomposition of Vg (dashed curve in Fig. 8b) are 25.16 %, 65.92 %,
and 93.77 %, showing — by necessity — the superiority of the eigendecomposition. Recall,
however, that the decomposition (5.25), or (5.35) evolves into an eigenstructure (in contrast
to the decomposition (5.19b); see also, 5.2.d(i)).

Before proceeding to the discussion of the results obtained with the SV-based Monte
Carlo technique, the picture corresponding to the solid curve in Fig. 8b is shown for
experiment C7gb in Fig. 17. Fig. 17 shows the cumulative variance accounted for by the
structures Z; which are in experiment C7gb different from Z; (see egs. (5.6) and (5.15)),
because the optimization is done with kinetic energy as the final norm in C7gb. Note
again, that both curves are normalized with the same value of 43.841 x 1010 §=2, as the
full sets Z; of C7hb and Z, of C7gb are both possible and complete representations of
M,V 4sM7. Note, however, that the curve in Fig. 8b (C7hb) is (slightly) steeper than the
curve in Fig. 17, because here the set Z; is directly the set of eigenvectors of M;Vyg M;F
(and therefore possessing the optimality property). The set Z;” of C7gb is derived from the
eigenvectors of PMtV48M;FPT (with P standing for kinetic energy) and therefore cannot
possess the optimality property for MVs M;r . This is reflected by the fact that the curve
in Fig. 8b lies always (slightly) above the curve in Fig. 17. For example, at k = 10, the
numbers are 54.60741 (C7gb), 54.93016 (C7hb), for k = 100 they are 89.95155 (C7gb),
90.35872 (C7hb), and for k = 500 they are 98.89042 (C7gb), 99.08510 (C7hb). Note that
this example illustrates a general result, in that an optimization with the final norm taken
identity (under the caveat of the dimensional problems mentioned in section 5.2) must
always lead to a “faster” reconstruction of MtVM;r than any other final norm choice.

In Fig. 18, the initial variance fields Vgg), relevant for experiment CThb, see eq.
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Fig. 16. Fraction of total initial variance explained through k initial SVs (see eq. (5.35)),
in a cumulative manner, for experiment C7hb. The figure shows o, defined in eq. (5.40),
as a function of k.
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Fig. 17. Fraction of total final variance explained through k time evolved SVs Z; (see
eq. (5.15)), in a cumulative manner, for experiment C7gb.
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Fig. 18. Initial variance fields, Vg;) (see eq. (5.35)), for experiment C7hb, at the 500
hPa level, as a function of the number of initial SVs Z, retained to represent the initial
variance fields: (a)k = 10 (19.53%), (b) k£ =100 (57.76%), (c) k = 500 (87.94%). Numbers
in parentheses give cumulative fraction of initial variance (see also Fig. 16). Plotting
convention as in Fig. 7. - o
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(5.35), are shown for the above three k—values at the middle level of the model (500 hPa).
These initial variances are for the scaling parameter s = 0 (see eq. (5.44)). These are
the variance fields (with their associated covariances; not shown) that the SV-based MC
technique “sees” when sampling from the initial pdf according to eq. (5.43), (5.44). The
degree of “completeness” of these truncated variance fields may be assessed by comparing
Fig. 18 with the 500 hPa — panel in Fig. 7. For each of these three k—values the SV-based
MC technique was carried out for sample sizes of M = 10, M = 100, and M = 5000, with
s = 0. The results are shown in Fig. 19 in terms of the (nonlinearly) predicted variance
at the 500 hPa level (in each row of Fig. 19, k is fixed; in each column of Fig. 19, M
is fixed). All the panels in Fig. 19 should be compared with the 500 hPa picture in Fig.
12a (obtained with M = 5000 and the complete initial covariance structure Vfg)). One
result apparent from Fig. 19 is that it is beneficial to increase the sample size M even if
k is quite small (first row of Fig. 19). Note that the right-most panel in the last row in
Fig. 19 approaches astptotically the true result. Note that taking a small sample from
the low—rank approximation of Vg (panel in upper-left corner in Fig. 19) gives already a
rough idea of the true result. Clearly, it may be of interest to study the properties of this
SV-based Monte Carlo technique (also with respect to scaling with s = 1), in more detail;
for example, in terms of its more detailed dependence on the values k and M chosen, and

also in terms of the predicted covariance structures.

6. Concluding remarks and open questions

In this paper some aspects related to the prediction of the uncertainty of numerical fore-
cast were considered. These consideration were centered around the problem of how to
propagate in time an initial probability density function given an NWP model. In the
restricted context of this paper, model errors were neglected, and in studying the time
evolution of the pdf the main emphasis was placed on the time evolution of the covariance
structure of the pdf.

After reviewing the general problem of covariance prediction, possible approaches to
this problem based on the Liouville equation, the stochastic dynamic equations, or the
Monte Carlo approach were briefly discussed in section 3. The more detailed consideration
of the Liouville equation in section 4 indicated some interesting properties of the solution of
the Liouville equation related to tangent—linear versions of NWP models, and the product
of growth rates of singular vectors. It may be of interest to study both of the results
discussed in section 4 somewhat further.

The discussion in section 5 concentrated around the prediction of the forecast error
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a)

Fig. 19. Assessment of the SV-based Monte Carlo technique described in section 5.3.
‘Shown are, in the context of experiment C7hb, variance fields at the 500 hPa model
level evaluated from nonlinearly predicted forecast error covariance matrices, as a function
of the number k of initial SVs Z; retained to describe the initial covariance structure
‘(k = 10 (top), 100 (middle), 500 (bottom) in each column), and as a function of the number
of Monte Carlo integrations: (a) M = 10, (b) M=100, (¢) M = 5000. All panels are
approximations to the 500 hPa model level picture in Fig. 12a. Plotting convention as in
Fig. 7.
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covariance structure as defined in eq. (5.1). This matrix carries the complete second-order
- information of the time—evolved pdf, and therefore its properties (be it in some approx-
imated form) are of primary interest in making statements about the uncertainty of an
NWP forecast. In section 5, various relationships between eigenvectors of covariance ma-
trices, and the so—called singular vectors were discussed and illustrated in the context of
a three—level QG model. It was emphasized that it is unavoidable to specify a norm (or
metric), either explicitly, or implicitly, as soon as the concept of eigenvectors (or singular
vectors) is applied in the context of covariance matﬁces, or (tangent—linear) model resol-
vents. Tangent-linear predictions of covariance structures were compared with nonlinear
predictions derived from large—ensemble MC integrations. An SV-based MC procedure
was discussed and briefly illustrated: this procedure relies on the representation of the ini-
tial covariance structure in terms of the initial SVs, rather than in terms of the eigenvectors

of the initial covariance structure (or another square-root representation).

The paper is concluded here with some additional remarks, some of which are referring
to the issue of nonlinearity. First, in the context of the SV-based MC procedure, described
in section 5.3, it is clearly possible to choose for the computation of the SVs-used in (5.35),
or (5.43), an optimization time that is somewhat shorter than the subsequent integration
time used for the nonlinear evolution of the model states defined through (5.43). In that
case the tangent-linear approximation is more accurate, but the SVs cannot fully develop
into the eigenvectors of S;TL. Studying that issue systematically is complicated by the

appearance of nonlinearities.

Second, one of the central equations used as a starting point to study covariance
evolution is eq. (5.3), expressing the tangent-linearly approximated form of eq. (5.1).
This equation is not only the starting point for SV computations (e.g., Barkmeijer et
al. 1997), but it is also central in the covariance prediction step in the Kalman filter
(e.g., Bouttier 1996).' In reconsidering (5.3), it is obvious that the use of linear (tangent—
linear) operators to describe the evolution of perturbations limits the validity of such
error evolution depending on the time intervals chosen and the magnitude of the initial
perturbation. Making this approximation amounts to neglecting the higher-order terms
indicated in (4.14). It appears, however, that these higher—order terms can be accounted
for — to some degree, at least — at several places. For example, consider rewriting equation
(5.3) in the form: | ‘

7 () (e = () pan )
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:(P M;ve Mvs ... Mve )(P Move Mgvs ... Mgve ) ,(6.1)

where v; denotes the ith vector appearing in a square-root representation of V. The
form of (6.1) clearly suggests to consider replacing the tangent-linear operator M; (as it
operates on the set of perturbations v{) by a nonlinear operator. Referring back to (4.14),

a possibility for such a formulation would be:

stz(P Hivi Hivg . Hav )(P Hivd Hevs . Hyvd ) -
=P [ Hevs Hevg oo HevE || Heve Hivy o Hevi | PT, (6.2)

where the fully nonlinear error evolution operator My, : has been defined in (4.14). Note
that the computation of the action of #,: on a given vector v{ is only approximately
half as costly as the computation of the tangent-linear operator My, ;. The forecast error
covariance matrix SY~ will be positive definite and symmetric, by its definition (6.2).

It seems unclear, however, in which way the eigenstructure of SFL will relate to the
concept of singular vectors. It is also important to note that expression (6.2) is not the
same as the definition (5.1), because (6.2) does not allow for the nonlinear evolution of the
mean, F(xg) (see below). In addition, it must also be noted that SN, evaluated according
to (6 2), will depend on the particular form of the square-root chosen for V — in contrast
to eq. (6.1): here the result STL will be always the same, no matter how Vl/ 2 was chosen
(assuming, of course, that all n vectors in V2 are used)

In a sense then, eq. (62) defines a nonlinear operator H; (that is clearly not repre-

sentable in a matrix form) to propagate the analysis error covariance matrix:
SNt = pvyLpPT, R (6.3)

where the nonlinearly time-evolved analysis error covariance matrix is:
yNL _ .s .s.‘.-s; ‘.s‘.s. .s — .
Vt = ’Htvl Htvz HtV ’Htvl ’Htvz ’Htvn = Ht(V) . (64)

n

As a first assessment of the structure of S} -, expression (6.2) was evaluated for the situ-
ation of experiment C7hb (see Table 1 in section 5.4), taking as VY/2 the (unique) lower—

triangular Cholesky decomposition of V (i.e., V4g in this experiment). The result is shown
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in Fig. 20 (using #:), and it is directly comparable with Fig. 11c (using My). It is imme-
diately evident that both figures are highly similar, with, however, the total final variance
in SN of 43.796 x %1071 s=2 being just insignificantly smaller than the relevant value in
ST (43.841 x x1071° 572, see section 5.4). This result is an indication that the tangent—
linear approximation is highly accurate (over 48 hours) when tested on the columns of the
lower—triangular Cholesky decompositiori of V. ‘

However, as discussed in section 5.4, the inaccuracy of the tangent—linear approxima-
tion implied large differences between S;~ (Fig. 11c) and the result S; (Fig. 12a) obtained
through the MC approach (with M = 5000). These differences must then traced to the
fact that — in the presence of nonlinearities in the model (2.1) — the mean over many (non-
linearly evolved) realizations is different from the nonlinear time-evolution of the initial

mean xg:

E(x) m My(xh) # My(x5), (6.5)

where x} represents a realization from the initial pdf (2.2), the overbar indicates the
averaging over all realizations i (intended to estimate E(x;) according to eq. (3.10)), and
M; is the nonlinear model operator introduced in (2.1). By referring back to (4.14), it
is noted that it is My(x§) that is used to define H;. It is speculated that using _/\;(;(;6_)
instead to define #; rather than using M;(x§) might make SN more similar to S;; note,
however, that M;(x}) only becomes available through performing MC integrations.

The difference between the mean state at time ¢ and the time—evolved mean, as
expressed in (6.5), is indeed substantial in the present experiment (at a forecasting time
of 48 hours). This result may also be given the interpretation that the coupling term in
the stochastic-dynamic equation for the mean with the second—order stochastic—dynamic
equation is not negligible (note that the MC approach can be interpreted as integrating the
stochastic dynamic equations with perfect closure). The same experiment was carried out
for a forecasting time of just 6 hours: in this case, Sy, SfL, and StTL are all very similar,
as are M(x}), and M, (x§), indi,cating only weak coupling between the first-order and
second—order stochastic dynamic equations. -

In view of this discussion it might be of interest to look closer at nonlinear predictions
of the forecast error covariance matrix, and, in particular, at the coupling between the
first— and second—order stochastic dynamic equations (see, also, Cohn 1993).

More generally, in dealing with nonlinear effects in approaches to uncertainty pre-
diction, it may be impoftant and useful to describe nonlinearities through a specific set
of indicators, such as, for example: (1) the difference between mean forecast and control
forecast (see also, Hersbach et al. 1997), (ii) the difference between Si~ and SNT (see

93



EHRENDORFER, M.: PREDICTION OF THE UNCERTAINTY OF NUMERICAL WEATHER FORECASTS...

Fig. 20. The forecast error covariance matrix, for experiment C7hb, in the (partly
nonlinear) formulation S}'" (see, eq. 6.3)), shown in terms of variance fields at the three
model levels. Plotting convention as in Fig. 7.
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egs. (6.1), (6.2)) for different factorizations of V, (iii) the difference between S}~ and S,
(see egs. (5.3) and (5.1)), (iv) the difference between nonlinearly and tangent-linearly
evolved perturbations (see eq. (4.14)) for perturbations consistent in structure and size
with the analysis error covariance matrix V. Assessing different aspects of nonlinearity
(see also, Buizza 1995) may provide new insight for finding approximate ways for their
inclusion in uncertainty prediction. Clearly, further studies will be required to study in
more detail the difficulties encountered in covariance prediction when model nonlinearities
become important.

A point related to the effect of nonlinearities concerns the extension of the “linear”
optimization problem (4.16) to the “nonlinear” optimization problem:

max J = (24;2t) = (H(xo,t)(20); H(x0,t) (20)) subject to : (zo;20) =1, (6.6)
where H has been introduced in (4.14). The solution to (6.6) (see also, Barkmeijer 1996)
will clearly include a better representation of nonlinear effects than the solution to (4.16).
However, it seems less clear how a solution (or, solutions) to (6.6) relate to the fully nonlin-
early obtained forecast error covariance matrix S;. Obviously, solving (6.6) is considerably
more difficult than solving (4.16), since the solution to (6.6) can no longer be obtained
by solving an eigenproblem. However, it is noted here that this nonlinear problem (6.6)
bears some relationship to the variational problems considered in variational data assimi-
lation (e.g., Courtier 1997). In such variational data assimilation contexts a cost function
depending nonlinearly on a control variable is minimized. The cost function is, however,
quadratic in certain variables that are nonlinearly related to the control variable.

A strong connection also exists between atmospheric data assimilation and the uncer-
tainty prediction problem through the appearance of the analysis error covariance matrix
in the definition of the singular vectors (see, e.g., eq. (5.4)). The analysis error covariance
matrix V is, in principle, a product of a data assimilation algorithm, and through its in-
clusion in the computation of SVs important properties of the initial pdf are reflected by

~ the growth of SV perturbations (see, also, Barkmeijer et al. 1997, Palmer et al. 1998).
Perturbation growth obtained on the basis of such inclusion of V will also represent in a
more realistic way the stability of the associated atmospheric flow, due to the constraints
on the initial perturbations imposed by analysis error covariance information. In the study
of atmospheric predictability, such stability investigations in terms of singular vectors are
an important generalization of stability studies in terms of the so—called normal modes (see
also, Farrell and Toannou 1996a, b; Hall and Sardeshmukh 1998). Even though the analysis
error covariance matrix V is, in principle, a product of a data assimilation algorithm, the

direct assessment of V in an operational environment presents a computationally highly
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expensive component within the data assimilation algorithm. Consequently, its represen-
tation in operational contexts is only possible in approximated forms (e.g., no or only
very limited flow dependence; see also, Riishgjgaard 1998). The sequential assimilation
algorithm described by the Kalman filter (e.g., Gauthier et al. 1993) provides a way to
relax some of these assumptions, resulting, for example, in a flow—dependent V. Conse-
quently, in this framework of the Kalman filter, the uncertainty prediction problem can
be studied more realistically in the sense that both the first and second moments of the
initial pdf (2.3) become flow—dependent, with the possibility of obtaining more realistic
flow—dependent predicted first— and second-order statistics, representing the ti_me—evolved

probability density function.
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