The Supercomputers from Siemens Nixdorf

and their Parallelization Strategy

Dr. H. Gietl, W. Kratzer, R. Rohrbach
Siemens Nixdorf Informationssysteme AG
Munich, Germany

1. INTRODUCTION

With the announcement of the new models §/40, Siemens has broadened its spectrum of Super-
computers by two parallel processors. The architecture of these systems is based on a memory
hierarchy with primary (main storage unit) and secondary storage (system storage unit). Up to four
scalar units and two vector units may be connected to the main storage unit forming a cluster. The
system storage unit is used for the communication betweeen different clusters.

To modify existing FORTRAN program codes easily and in addition enable the programmer to
write new programs for parallel systems, the following summary of the strategy for the parallelization
of FORTRAN programs should be applied:

a) The parallelization of DO loops should be carried out automatically by the compiler in order
to allow the easy use of existing programs.

b) To force parallelization and implement synchronization between subroutines, use Optimiza-
tion Control Lines (OCL) as long as possible. They have the advantage that program porta-
bility between different processors is retained and sequentialization for debugging purposes
can easily be applied, because ignoring the OCLs does not change the semantics of the pro-
gram.

¢) Keep compatibility with existing FORTRAN programs by relating the data allocation for par-
allel processing to the FORTRAN meaning of common blocks.

This paper gives an overview of architecture and hardware of the Siemens multiprocessors and a
detailed description of the parallel processing concept from the software point of view. It is orga-
nized in the following way:

Chapter 2: Short overview of the S-Series

Chapter 3: Parallel Processing Strategy

Chapter 4: Automatic Parallelization

Chapter 5: OCLs for Parallel Processing between Subroutines
Chapter 6: Data Allocation

Chapter 7: Synchronization Mechanisms

Chapter 8: Conclusion

83



2. SHORT OVERVIEW OF THE S SERIES

2.1 General Description

The recently announced S Series from the Siemens Vector Processing System is based on four
models (S100, S200, S400, S600) with different peak performances between 500 MFLOPS and 5
GFLOPS. The difference in performance is due to the fact that the execution unit for vector
instructions (the so called vector unit) varies between the models. The vector unit executes arith-
metic and logical operations by hardware implemented multifunctional pipelines. These multifunc-
tional pipes are able to carry out add, multiply, or combined add and multiply instructions
(SAXPY-operations) as one vector instruction. Thus a maximum of two floating—point operations
within one vector—-unit cycle can be achieved by one multifunctional pipe.

With a cycle time of 4 ns, the S100 reaches a peak performance of 2 operations / 4 ns = 500
MFLOPS, since one arithmetic pipe may operate at a time. The increase in performance for the
$200 is obtained by adding a second multifunctional pipe (both working in parallel), thus doubling
the peak performance of the §200 to 1GFLOPS. In the case of the S400 and the S600, the two
multifunctional pipes are implemented twofold resp. fourfold by hardware. It means that vector
instructions in the S400 partition the vector operands into two (four in the case of the S600) equally
sized portions and execute these portions in parallel. As a consequence, the execution time for
vector instructions of the same vector length is reduced in the S400 by a factor of two (four in the
case of the §600).

From the hardware point of view, the models $400 and S600 may already be regarded as parallel
processors based on internal parallelization. With the reduced vector-unit cycle-time of 3.2 ns, the
resulting peak performance is 2.5 GFLOPS for the S400 and 5 GFLOPS for the S600. (Some of the
S$400 models are delivered with 4.0 ns, resulting in 2 GFLOPS peak performance.) Figure 2.1
summarizes the relation between model, pipeline parallelism and performance.

The various vector units of the S series are combined with at least one scalar unit (named
$100/10, S200/10, S400/10, resp. S600/10, or collectively S/10). The scalar unit controls the
vector unit and executes the scalar parts of a vectorized program. It is a well-known fact, that even
with a fast vector unit the scalar costs for a highly vectorized program cannot be neglected and may
consume a considerable amount of the total CPU time. Therefore, the S Series is provided with the
fastest scalar processors available today, having a sustained performance between 24 and 37.5
MFLOPS for mere scalar code (depending on the model).

Model S100 S200 S400 S600
Cycle Time (ns) 4 4 3.2 3.2
Number of
Parallel Operations 2 4 8 16
Peak Performance
(MFLOPS) 500 1000 2500 5000
Sustained Scalar
Performance 24.0 30.0 37.5 37.5
(MFLOPS)

Some of the models with a S400 vector unit are delivered with a cycie time of
4.0 ns, resulting in 2000 MFLOPS.

Figure 2.1

84



The significance of a fast scalar unit is demonstrated in the following example, where the execu-
tion behaviour of a highly vectorized job is analyzed. Assume a job running 100 seconds in scalar
mode. Assume also that it has a vectorization ratio of 98%, i.e. 98 seconds can be reduced through
vectorization. If there is a considerable speed—up factor of, say, 50 for the vectorizable part of the
code compared to scalar execution, the 98 seconds are reduced to 1.96 seconds when executed in
the vector unit. The execution time of 2 seconds for the scalar part of the code remains unchanged.
Hence more than 50% of the total CPU time is spent in the scalar unit, and consequently the vector
unit is not busy during this time. Moreover, in a computer center usually more than one job is
executed at a time and the utilization of the vector unit is even more reduced due to the fact that
jobs with different vectorization ratios and profiles (e.g. I/O bound) enter the vector processing
system in a mixed way. (Not every job running on a vector processor has a vectorization ratio of
98%)

Having analyzed this insufficient utilization of the vector unit, the designers of the S Series had
the following revolutionary idea: use the remaining vector unit time by a second scalar unit. This
leads to the Dual Scalar Architecture which is the unique feature of the new Siemens vector
processors. This architecture allows two scalar units to share one common vector unit. Since every
scalar unit has access to one set of vector registers, effectively only the pipelines are shared: logical-
ly two vector units can be found, although physically there is only one. Therefore, in the best case a
Siemens system with the Dual Scalar Architecture has the throughput of the much more expensive
configuration where two complete processors (each with a scalar unit and a vector unit) are avail-
able. By means of the Dual Scalar Architecture, the S Series allows a much better utilization of the
vector pipelines (see the example from figure 2.2) and thus gives a more attractive price/perfor-
mance ratio.

The models with Dual Scalar Architecture are named §/20. The architecture is shown in figure
2.3.

To meet the requirements of applications in science and industry, the programmer should be
able to write programs which can use more than one vector unit at the same time, thus speeding up
the program through multitasking. On the basis of the Dual Scalar Architecture, the multiproces-
sor model S/40 is formed by combining two S/20 models, resulting in a processor complex with two
vector units and four scalar units. The communication between all cooperating processors is done
via the common main storage unit {(MSU).

SU1

Job 1

shared VU
Job 2

SU2

B time

If Job 1 Is using only the scalar unit (SU1), Job 2 may use the shared vector unit (VU) and vice versa.

Figure 2.2

85



This structure opens up some promising possibilities. On the one hand, the programmer may
parallelize his program for execution on two processors. On the other hand, when two parallelized
jobs are running concurrently, the scalar units can be allocated to the jobs in such a way, that each
job can use both vector units. Together with the common usage of the MSU, this results in a more
efficient exploitation of the expensive resources. In a multiprocessor system with N traditional
vector processors, a user program (parallelized for N processors) normally cannot keep busy all the
resources (CPU, main storage, etc.) over the whole period of its execution time. But within the $/40
model based on the Dual Scalar Architecture, the system may be exploited in an optimal way. In
this way, the S Series unifies the interests of the programmer (speed-up of the program through
multitasking) and the computer center (optimizing the throughput of the system).

Figure 2.4 summarizes the architecture of the Siemens multiprocessors. It should be noted that

the upgrade within this line of models can be done in place, simply by add on.

2.2 Hardware Summary

Logic VLSI
The processor logic uses highly integrated, emitter coupled logic (ECL) VLSIs with up to 15000

Iscalar unit

buffer
storage

scalar
execution unit

vector unit

T T

registers | T e ©

S .........

S -----

U

el [0ad/St.

| 32 vector fe— =
E i r--- ;
198 | load/st, [ SelOSES [T mult

Iscalar unit

buffer
storage

scalar
execution unit

Architecture of the S/20 model: The muitiprocessor consists of vector unit, scalar unit, main storage
unit, system storage unit (optional) and I/O processor. The transfer between the main storage unit and
the vector registers is realized by the two load/store pipelines. The multifunctional pipelines (multi) are
working on the vector registers. Operations on the mask registers are executed by the mask pipelines.
Six of the seven pipelines may work in paraliel.

SSU : System storage unit (32 Gbyte)
MSU : Main storage unit {2 Gbyte)
IOP : Input/output processor (up to 1 Gbyte/second)

Figure 2.3

86



gates per chip and a signal propagation delay of 80 picoseconds. Super high speed ECL-RAM chips
with a 64 Kbit memory capacity, a chip access time of 1.6 nanoseconds and 3500 gates per chip are
used for vector registers, control storages and buffer storage. As a result, the vector unit runs with a
cycle time of 4 ns resp. 3.2 ns depending on the model.

Multi-layer glass—ceramic board (MLG)
For the first time ever, glass ceramics has been used as the material for the motherboard to

improve propagation speed. Up to 144 VLSIs can be mounted on a 24.5 * 24.5 square centimeter
board.

Large—capacity static RAM

The main storage unit (first level of the two level memory hierarchy) features high-speed large-
capacity 1 Mbit static RAM chips with an access time of 35 ns. It can be extended up to a maximum
of 2 Gbytes, greatly improving the system performance when large-scale numeric tasks are ex-
ecuted. The main storage array card is composed of high-density printed circuit boards. Up to
eight main storage array cards are mounted three dimensionally on the MLG, thus achieving a
maximum capacity of 512 Mbytes per MLG.

System Storage Unit (SSU)

The system storage unit (second level of the two level memory hierarchy) features high-speed
large—capacity 1 Mbit (4 Mbit) dynamic RAM chips with an access time of 100 ns. The high-speed
large-volume SSU of 1 to 8 (32) Gbytes allows flexible system configuration thus improving system
throughput and enhancing input/output performance. In particular, with the SSU serving as a swap
area, major increases are possible in the number of concurrent users of vector functions during
interactive sessions without loss of performance. Moreover, the SSU allows an in—core treatment of
temporary files through the Virtual Input Output / FORTRAN (VIO/F) facility.

High throughput channel (I/O processor)

The block multiplexer channels have a maximum transfer rate of 4.5 Mbytes per second, and
the optical channel has 9 Mbytes per second. With the maximum of 128 channels, a throughput of
1 Gbyte per second can be achieved. Optical channels allow peripheral devices to be connected
over long distances via optical fiber cable — up to a maximum of 1 kilometer.

S/10 S/20
MSU MSU

suU SuU SuU

S/40
MSU

sSuU su ’ sSuU su

SU: Scalar unit

VU: Vector unit

MSU: Main storage unit :

53 Vector register set, exists twice (four times) in the /20 (/40) models

Execution pipelines of the VU. Exists only once and may be shared by the scalar units

Figure 2.4

87



3. PARALLEL PROCESSING STRATEGY

The parallel processing concept has been designed to make the development of parallel FOR-
TRAN programs easy and semantically correct. The parallelization of DO-loops within a Fortran
program is always carried out automatically by the compiler in order to facilitate for the programmer
the capabilities of a multiprocessor system. Beyond this automatic parallelization, the programmer
can furthermore express parallelization by using processing elements like Optimization Control
Lines (OCLS) and calls to service subroutines for parallel processing.

Whenever a correct resequentialization of a parallelized program can be achieved by simply
ignoring the parallel processing elements, OCLs are preferable: the program can exploit the power
of the machine without sacrificing portability. It is easily ported to sequential systems (e.g. for
debugging purposes) or to other parallel systems. An example of a situation where this strategy is
very suitable is the treatment of critical sections. However, when the resequentialization is more
complicated (i.e. POST/WAIT-mechanism, barrier synchronization), the use of service subrou-
tines for parallel processing is the better method. In this context, OCLs would be a dangerous
source of error. Portability is not relevant here, since restriction to the FORTRAN standard would
completely exclude these mechanisms.

The parallel processing concept within the S Series is based on three features: processor, task
and piece.

Processor: Hardware resource as described in chapter 2. Scalar unit for a mere scalar pro-
gram {no vector instructions). Scalar unit and vector unit together for a vectorized
program which includes scalar and vector instructions.

Task: A task represents the logical execution unit which is defined and dispatched by the
operating system. Dispatching means that the operating system decides, which
processor will be assigned to which task.

Piece: The concept of pieces is significant to understand the semantics of parallelized
programs. Parallel processing of a FORTRAN program means that several pieces
execute the program concurrently. A piece represents the minimum control unit
which can operate in parallel to other pieces. Pieces can be generated and deleted
firstly by automatic parallelization (see chapter 4) and secondly by parallel calls of
subroutines (see chapter 5).

Tasks and pieces are connected via the FORTRAN library, whereas tasks are mapped to proces-
sors by the operating system. As a result, we have the structure shown in figure 3.1 for parallel

L processors

M tasks -
N pieces
Processor: Hardware resource
Task: Logical execution unit which will be assigned to a processor by the operating system
Piece: Pieces concurrently execute a parallelized FORTRAN program
Figure 3.1

88



processing.

The generation of pieces and their deletion always follows the same FORK-JOIN structure. This
will be explained in detail in the example, which is graphically represented in figure 3.2.

Let us assume a specific program point of an existing piece (P1) where several new pieces
(P2,P3) will be generated (FORK). During this forking process, the initiating piece (P1) will be set
to waiting state. All the newly generated pieces (P2,P3) may now start execution depending on the
availability of processors. The waiting state of piece (P1) will be released when all generated pieces
have finished their execution (JOIN). In this way, the parallel processing concept is always based
on a FORK-JOIN structure. It should be noted, that the FORK-JOIN structure may be nested,
which means that newly generated pieces may generate pieces and so on, allowing the programmer
to build up tree structures of pieces.

To execute a program in parallel, pieces (parts of the program) have to synchronize and to
exchange data and must be able to work on their private data. For the synchronization of pieces,
critical sections, POST/WAIT mechanisms, semaphores, and barriers have to be implemented in
the FORTRAN system. Concerning the access to data from pieces there are two possibilities.
Firstly, to allow only private access to data, data area may be allocated exclusively to some pieces.
Secondly, to allow common data (or to exchange data) between different pieces, the address space
may be shared by various pieces.

The OCLs and the service routines for parallel processing may be classified according to their
functionality into 4 groups:

a) Auxiliary OCLs for automatic parallelization.
The inline parallelization like DO-loop slicing is carried out automatically by the compiler.
Therefore, no OCLs are required. But in special cases it may be appropriate to assist the
compiler with OCLs like
!10CL NOPREC (var)
This directive indicates, that there is no data dependency for variable var which could disturb
parallelization.

The Fork structure in plece P1 generates new pieces P2 and P3, setting the initiating piece P1
into a walting state
The Join structure combines pieces and releases the Initiating piece from the waiting state

Figure 3.2

89



b) OCLs to force parallel execution of subroutines.
Parallel execution of subroutines can be initiated by the following OCLs.
IOCL PARCALL
IO0CL END PARCALL
All CALL statements between PARCALL and END PARCALL generate parallel pieces.
¢) OCLs and service routines for synchronization.
Programming tools are available to define critical sections, POST/WAIT structures, sema-
phores, and barriers.
d) OCLs for Data Allocation.
Data belong to one of the three classes AUTOMATIC, SAVE, and GLOBAL. The selected
class determines, firstly, whether the data should be stored in the main storage unit (MSU) or
in the system storage unit (SSU) and, secondly, the life range of this data. The life range
furthermore determines which pieces have access to the data.

4. AUTOMATIC PARALLELIZATION
4.1 Basics of automatic parallelization

Automatic parallelization is applied to DO loops only. If the data-dependency analysis of the
DO loops carried out by the compiler allows for vectorization and parallelization, the compiler has
two techniques depending on the loop structure:

DO J=1,M
— DO I=1,N
PV A(LJ) = B(l,J) + C(L,J)

| — END DO
END DO

~ Fork ™~

DO J=1, M/2 DO J=M2+1, M
DO I=1,N DO i=1,N
A(l,J) = B(1,J) + C(1,J) A(l,J) = B(l,J) + C(I,J)
END DO END DO
END DO END DO

e ——
_Jon_~

P means that the loop will be parallelized

V indicates that the loop will be vectorized

The loop J=1,M will be divided into two disjoint sets J=1,M/2 and J=M/2+1,M which can be ex-
ecuted in parallel, because there is no data dependency between the two generated pleces.

Figure 4.1

90



a) For nested DO loops, the compiler selects the best index for vectorization and the best one
for parallelization, permuting the loops (if necessary) in order to make the vectorizing index
the innermost and the parallelizing index the outermost one.

b) Concerning a single loop, both vectorization and parallelization may be applied together.

The first technique is a natural way to distribute nested loops onto more than one processor.
The set of indices for the outer loop is divided into disjoint parts and each of these parts is used to
generate pieces, which may be executed in parallel. The implementation image produced by the
compiler for this kind of parallelism is shown in figure 4.1.

The second technique (both vectorization and parallelization for a single loop) may be applied
by the compiler for DO loops, if the vector length for the calculation is large enough to be divided
into two or more disjoint parts. This technique may also be useful for DO loops containing so many
operands that the vector register set of two processors may help to speed up the total execution time
of the program. By means of this technique, the overall performance of a program may be easily
increased. An example is shown in figure 4.2.

It should be noted that the automatic parallelization of programs is carried out in a semantically
correct way. Compiler and runtime library control synchronization and data access. Therefore, the
programmer does not need to take care of the pieces generated by automatic parallelization.

4.2 Auxiliary OCLs for automatic parallelization

The user can advance parallelization specifying the same OCLs as during automatic vectoriza-
tion. With regard to parallelization there are some additional OCLs.

SUM = 0.0
— DO I=1,N
P&V SUM = SUM + A(l)
L ENDDO

" Fork .
/\

SUM1 = 0.0 SUM2 = 0.0

DO I=1, N/2 DO | =N/2+1, N
SUM1 = SUM1 + A(l) SUM2 = SUM2 + A(l)

END DO END DO

el
S—_doin_~

SUM = SUM1 + SUM2

P&V means that the loop will be parallelized and vectorized

Figure 4.2

a1



IOCL PARDO(2)
DO J=1IS, IE
DO I=1,N
A(LJ) = B(,J) + C(1,J)
END DO
END DO

Figure 4.3

4.2.1 OCL for data dependency specification
10CL NOPREC (var)

The NOPREC OCL tells the compiler that there is no data dependency which disturbs paralleliza-
tion of a DO loop or by which some synchronization is necessary. This OCL can be written before a
DO statement which should be sliced. The parameter 'var’ is the name of a variable or an array
which has no data dependency and therefore does not prevent parallelization. The syntax and
semantics of this OCL are very similar to the NOVREC OCL for vectorization. But the conditions of
data dependency may be different for vectorization and parallelization.

4.2.2 OCL to avoid parallelization

IOCL SERIAL

This OCL suppresses automatic parallelization of the succeeding DO loop.

4.2.3 OCL for DO loop parallelization
There is only one OCL for DO loop parallelization. It is

IOCL PARDO(n)

The constant n specifies the number of parallel pieces if the loop can be parallelized. See figure
4.3 for an example.

The line 10CL PARDO(2) does not force parallelization, but shows that the DO loop is a candi-
date for parallel execution. The compiler analyzes the DO loop and generates parallel object code
automatically if this is possible. Without this OCL, the compiler would parallelize the DO loop,
generating 4 or 8 pieces (depending on the default value of the compiler). In the example, the OCL
specifies two pieces.

|OCL PARCALL
CALL SUB1
CALL SUBn

IOCL END PARCALL

Figure 5.1

92



5. PARALLEL PROQCESSING BETWEEN SUBROUTINES

To force the parallelization of subroutines, the programmer has to inform the compiler that the
subroutines are semantically independent. This is done via OCLs which specify the range for the
parallel activation of subroutines. The syntax for these OCLs is shown in figure 5.1.

The CALL statements between !0CL PARCALL and !OCL END PARCALL initiate subroutines
which can be executed in parallel. Each CALL statement generates a child piece which is controlled
by the corresponding subroutine. After generation of all child pieces, the piece executing I0CL
PARCALL and !OCL END PARCALL (i.e. the parent piece) is set to waiting state. After all the called
subroutines have completed their execution (which means that all child pieces have completed their
execution), the parent piece is released from the waiting state and resumes its execution with the
statement following the line !OCL END PARCALL.

The 10CL PARCALL may be extended by WITH BARRIER. See chapter 7 for the meaning of this
additional construct.

Between 10CL PARCALL and |OCL END PARCALL, only CALL statements are allowed. Soitis
not permitted to nest these !0CL in a sequence of statements. Clearly, it is allowed to have a parallel
call in a procedure which is called by another parallel call (as is shown in figure 5.2). With this
relationship between parent and child pieces, a multilayer tree structure may be built. Figure 5.3
illustrates the structure of example 5.2.

10CL PARCALL

gﬁtt ggg; Generates two child pieces

10CL END PARCALL —_

SUBROUTINE SUB2

10CL PARCALL ]
CALL SuB21 The piece which is generated above
CALL SuB22 generates two more child pieces
{OCL END PARCALL —
END

SUBROUTINE SuUB1

END
Figure 5.2
SUB1
Main SUB21
suB2
sSuB22
Figure 5.3

93



6. DATA ALLOCATION

Concerning parallel processing, it is necessary to manipulate address space that can be shared by
different pieces. In addition, it must be possible to access address space that is private to a piece.
Furthermore, the user can choose the primary (MSU) or secondary storage medium (SSU). For
this reason there are two kinds of data attributes.

The first kind is the "Life Range”. It may be static or dynamic. The life range determines when
data is allocated in the storage and when it is released from the storage. The life range determines
also, which pieces have access to the data.

The second kind is the " Allocated Area”. In the S Series the allocated area is either MSU or
SSU. For common blocks both areas are possible. Variables which are not in a common block
must be allocated in the MSU.

Since allocation in the SSU is always static, there remain three combinations:

attribute life range area
AUTOMATIC dynamic MSU
SAVE static MSU
GLOBAL static SSuU

The three attributes AUTOMATIC, SAVE, and GLOBAL exclude one another, so data cannot
have two of these attributes. For common blocks, the default attribute is SAVE. The other two
attributes AUTOMATIC and GLOBAL must be set explicitly. For blank common, the attribute SAVE
is fixed. For named common blocks all three attributes are possible. The declaration of common
blocks must be consistent. This means: ”A common block declared with one attribute in some
'procedure must not be declared with a different attribute in another procedure.”

Data which is not in a common block can have the attributes AUTOMATIC or SAVE. Variables
specified in a SAVE statement and variables initialized in a DATA statement have the SAVE attrib-
ute. All other local variables have the attribute AUTOMATIC.

Variables with the SAVE attribute are allocated on the MSU when the program starts, and re-
leased when the program ends. To retain compatibility with existing programs, the default attribute
for common blocks is SAVE. (Up to now it has been a common practise to assume that the data in a
common block "live” from program start to program end, although the FORTRAN ‘standard does
not guarantee this property.) ’ '

Data with the GLOBAL attribute is also allocated when the program starts and released when the
program ends. But in contrast to the SAVE variables, GLOBAL data is allocated on the SSU.

To provide private data to different pieces, data with the AUTOMATIC attribute is used. This
data is dynamically allocated on the MSU, when a routine which uses them starts, and it is released

!0OCL GLOBAL Allocates statically on the SSU
: COMMON (COMMON statement from FORTRAN)
Static allocation:on the MSU
COMMON (COMMON statement from FORTRAN)
SAVE - (SAVE statement from FORTRAN)
!0CL AUTOMATIC Allocates dynamically on the MSU
COMMON . (COMMON statement from FORTRAN)
Figure 6.1

94



when this routine ends. So far, the life range of our AUTOMATIC attribute is independent from
parallelization.

It follows from these considerations, that for data in a main program the life ranges of AUTO-
MATIC and of SAVE are identical.

In the current S Series, the System Storage Unit (SSU) will be used as a secondary storage for
allocation of common blocks. Therefore, the life range of common blocks with the attributes
GLOBAL or SAVE is identical. The first purpose of the SSU is to enable the programmer to write
programs with a memory size larger than the size of the existing Main Storage Unit. But because of
the memory hierarchy, the models of the S Series can easily be upgraded to multiprocessor systems,
where the communication between processors is carried out via the SSU; and for these future cases
the life range of common blocks with the attributes GLOBAL or SAVE may be different (depending
on the program structure). This will be described in detail in a forthcoming publication.

The handling of data which is not in a common block is straightforward. Data with the SAVE
attribute is shared. Data with the AUTOMATIC attribute are dynamically allocated and released. Ifa
subroutine is executed twice in parallel, the two instances of the routine use the same SAVE vari-
ables but different sets of AUTOMATIC variables. With serial calls, the AUTOMATIC variables may
be different or may be the same. This ambiguity does not affect a semantically correct program.

The handling of common blocks is more flexible and more complex. Itis outlined in the follow-
ing pages. For common blocks, the attributes AUTOMATIC and GLOBAL are defined through OCLs.
For the SAVE attribute we do not need a OCL, because this attribute can be defined via the SAVE
statement within FORTRAN. The definition of the attributes for common blocks is shown in figure
6.1.

6.1 Common blocks with AUTOMATIC attribute

The area for data with the AUTOMATIC attribute is allocated and released dynamically on the
MSU. The life range is restricted to the subroutine calling the common: "It will be allocated when
the subroutine which uses the common block starts, and deleted when the subroutine ends.” Please
notice, that the life range of an AUTOMATIC common block is independent from parallel process-

SUBROUTINE DRIVER Parent piece

10CL AUTOMATIC(CM)
COMMON /CM/ X,Y,Z /CM/ has AUTOMATIC attribute.
CALL sUB1 I/CM/ is allocated when DRIVER starts
CALL SuB2 and released at its termination. ’
END MAIN
SUBROUTINE SUBH1 Called by DRIVER

OCL AUTOMATIC(CM)

COMMON /CM/ A,B,C /CM/ denotes the same common block
as declared in DRIVER.
/{CM/A,B,C is equal to /CM/X,Y,Z

END SUB1
SUBROUTINE SUB2 Called by DRIVER
10CL AUTOMATIC(AA)
COMMON /AA/ T,U,V /AA/ is allocated when subroutine SUB2
starts and released at its termination.
END

Figure 6.2

95



ing. If a program is executed sequentially, the !OCL AUTOMATIC will not cause any problem.

10CL AUTOMATIC (CM)
COMMON /CM/ varlist

When /CM/ is already declared as an AUTOMATIC common block in a procedure of the calling
history, then /CM/ will be the same as the instance of that /CM/ which has been declared in the latest
procedure of the calling hlstory On the other hand, when there is no other /CM/ in the calling
history, then a new instance is allocated for /CM/. This instance will be released when the proce-
dure terminates. The different cases are shown in Figure 6.2.

To improve program reliability, another variant of the AUTOMATIC OCL can be specxfled

I0CL OLD AUTOMATIC(CM)
COMMON /CM/ varlist

When /CM/ has been declared as an AUTOMATIC common in a procedure of the calling history,
the meaning of 10OCL OLD AUTOMATIC does not differ from IOCL AUTOMATIC. The same (already
allocated) common block is used. However, when /CM/ is not declared by any procedure in the
calling history, the occurrence of this IOCL is a semantic error and the program is abended. In
other words, /CM/ must already have been allocated, when a procedure is called which contains
!OCL OLD AUTOMATIC.

SUBROUTINE DRIVER ~ Outer piece
COMMON /STATIC/ A /STATIC/ has SAVE attribute; it is allocated when the
main program starts and released at its termination
10CL PARCALL.. o Generates two child pieces
CALL SUBt1
CALL SuBt
10CL END PARCALL
END DRIVER
SUBROUTINE SUB1 ' Called by DRIVER - ;
10CL AUTOMATIC(AUTO) " /AUTO/ has AUTOMATIC attribute. /AUTO/ is
COMMON /STATIC/ A - allocated when SUB1 starts and released at its
COMMON /AUTO/ B termination. »
IOCL PARCALL " Generates two child pieces’
CALL SuB2
CALL SuB2 o
10CL END PARCALL
END SUBH
SUBROUTINE SUB2 4 Called by SUBt '
IOCL AUTOMATIC(AUTO) /{AUTO/ has AUTOMATIC attribute. The version
COMMON /STATIC/"A + allocated by SUBT is used.

COMMON /AUTO/ B
END SUB2

Figure 6.3

96



6.2 Common blocks with SAVE attribute

The instance for common blocks with SAVE attribute is allocated at the beginning of the program
and released at its termination. Therefore, the life range is static, which means that it exists as long
as the program is in execution and that there is only one instance of this common block. See the
program in figure 6.3 for details.

Subroutine SUB1 is called in parallel from the DRIVER subroutine, and subroutine SUBZ2 is called
twice during each execution of SUB1. Because there is no |OCL for common block /STATIC/, the
default value SAVE is assumed, and the two instances of SUB1 share common block /STATIC/.

In contrast, there is !OCL AUTOMATIC for common block /AUTO/ in SUB1 and SUB2. So its
variables are allocated when SUBH1 starts and released when SUB1 ends. The second execution of
SUBH1 allocates another instance of /AUTO/. Therefore, the two instances of SUB1 do not share
common block /AUTO/. Subroutine SUBZ2 does not allocate /AUTO/, because common block
/AUTO/ exists already, when the subroutine SUB2 is invoked; and SUB2 does not delete /AUTO/,
because it has been allocated by another routine in the calling history. Each of the four instances of
SUB2 uses the /AUTO/ from that instance of SUB1, which called it. Two different versions of
common block /AUTO/ exist concurrently in the program.

Figure 6.4 shows the relations between the pieces of this example. /STATIC/ is the same in all
pieces. /AUTOQ/ is different: Pieces P1, P3, and P4 use one instance of /AUTO/, pieces P2, P5, and
P6 use a second instance of it.

6.3 Common blocks with GLOBAL attribute

The instance of common blocks with the GLOBAL attribute is allocated on the SSU at the begin-
ning of the program an released at the termination. The difference to the SAVE attribute is the
allocated area (MSU for SAVE).

For the moment, the GLOBAL attribute allows the programmer to write programs with a memory
size larger than the size of the existing Main Storage Unit by using the SSU via the GLOBAL OCL.. In
the future, the GLOBAL attribute will become increasingly important, when parallel programs can be
written by fully using the hierarchic storage architecture of the S Series.

—— piece PO
DRIVER
— piece P1 — piece P2
SuB1 SuBt
I l
piece P3 piece P4 piece P5 piece P6
|— SuB2 ] I— SuB2 ] l_ suB2 ] I_ suB2 ]
' | ' ] ' 1 ' 1

Figure 6.4

97




7. SYNCHRONIZATION MECHANISMS

The synchronization between pieces during parallel execution is implemented by means of OCLs
and service subroutines for parallel processing. The mechanisms used for synchronization are criti-
cal sections, POST/WAIT constructs, semaphores, and barriers.

7.1 Critical Section

Critical sections are parts within pieces which at any time must be executed exclusively by only
one piece. Other pieces which would like to enter the same critical section have to wait until the
critical section has been released. Imagine an address space where access to and update of the
variables should be done exclusively. Because sequential execution of a parallelized program con-
taining critical sections on only one processor does not change the semantics of the program, OCLs
are suitable for critical sections. For one processor there is always only one piece executing a critical
section.

To define critical sections, the OCLs from figure 7.1 are used. The lines |OCL PAR MUTEX (var)
and !OCL END MUTEX (var) establish the exclusive control. The variable "var” specified in !OCL
PAR MUTEX (var) is called "mutex variable”. Critical sections which refer to the same mutex vari-
able are "mutually exclusive”. Therefore, during the execution of one critical section, other critical
sections which refer to the same mutex variable cannot be executed. If a piece tries to execute such
a critical section, it will be put to waiting state at the entry of the critical section.

10CL MUTEXID(var) Declares mutex varlable
10CL PAR MUTEX (var) To get mutex
10CL END MUTEX(var) To release mutex
PAR MUTEX(L) END MUTEX(L)
piece 1 N\t 1
PAR MUTEX(L) END MUTEX(L)
piece 2 A V—
. wait V free
. i
: PAR MUTEX(L) ‘ END MUTEX(L)
piecen v.--..-.-.-.=v——
wait free

Piece 1 gets the mutex and is executing the critical section exclusively.

Piece 2 tries to get the mutex but will be put to a walting state until Piece 1 releases the mutex. After
that Piece 2 may enter the critical section, etc.

"3 : indicates the critical section

Figure 7.1

!OCL PAR MUTEX(L.1)
CALL SuUB Critical section can reside in SUB
IOCL END MUTEX

Figure 7.2

98



The mutex variable can either be a scalar or an array element. It cannot be referred to as an
operand of an operator. No values can be assigned to this variable.

Critical sections can be nested following the sequence of description and execution. If a dead-
lock occurs by incorrect nesting, the responsibility is always on the user’s side.

!OCL EVENTID(var) Declares an event variable
CALL EVENTPOST (var) To post the event

CALL EVENTWAIT (var) To wait for the event
CALL EVENTRESET (var) To clear the event variable

EVENTWAIT (E1)

[S11=1e1- 2 N ——— S S —

piece 2

EVENTPOST(E1)

Piece 1 has to walt for an event and cannot continue execution
Piece 2 posts the event releasing Plece 1 from the waiting status

Figure 7.3
PROGRAM MAIN
IOCL EVENTID(EV1,EV2) Declaration of EV1 and EV2 as event
variables
REAL A(10), B(10), C(10)
CALL EVENTRESET (EV1) Initialization of event variables
CALL EVENTRESET (EV2)
10CL .I:-’;ARCALL Generation of two child pieces. Event
CALL SUB1 (EV1, EV2, A, B, C) variables may be transferred
CALL SUB2 (EV1, EV2, A, B, C) as arguments
10CL END PARCALL
END MAIN
SUBROUTINE SUB1 (EV1, EVZ2, A, B, C)
10CL EVENTID(EV1,EV2) Declaration of dummy arguments as
REAL A(*), B(*), C(*) event variables
CALL EVENTWAIT (EV1) Wait until A(5) is initialized
B(5) = A(B) + 1.0
CALL EVENTPOST (EV2) Post that B(5) is initilaized
END SUB1
SUBROUTINE SUB2 (EV1, EV2, A, B, C)
I0CL EVENTID (EV1, EV2) Declaration of dummy arguments as
REAL A(*), B(*), C(™) event variables
A(5) = 17.0 |
CALL EVENTPOST (EV1) Post that A(5) is initialized
CALL EVENTWAIT (EV2) Wait until B(5) is initialized
C(5) =B(5) + 1.0
END SUB2

Figure 7.4

99



7.2 POST/WAIT mechanism

The POST/WAIT mechanism allows the programmer to define certain program points within
pieces, where pieces have to wait for an event (i.e. until this event has been posted). Let’s assume a
piece reaching a statement which asks for the instance of an event. The piece will be put to waiting
state, if the event has not yet occurred. This waiting state will be released and the piece will come to
ready state, when the event will be posted. The declaration of the event variable is done via OCLs,
the POST/WAIT mechanism itself needs service subroutines for parallel processing. Figure 7.3
shows the necessary OCLs and service subroutines and demonstrates the synchronization between
pieces via the POST/WAIT mechanism. ‘

The service routines EVENTPOST, EVENTWAIT, and EVENTRESET realize a synchronization
mechanism of the POST/WAIT type. The variable for the synchronization of a POST/WAIT type
synchronization is declared with !OCL EVENTID. This variable is called event variable or event type
variable. Scalar variables or array elements are allowed for event variables.

Figure 7.4 shows an example with two event variables. The POST/WAIT construct with variable
EV1 guarantees that SUB1 uses A(5) only after SUB2 did assign a value to this array element.
Similarly, through EVENTPOST and EVENTWAIT with varible EV2, it is guaranteed, that the use of
B(5) in SUB2 is postponed until SUB1 has assigned a value to B(5).

7.3 Semaphore

To create a synchronization mechanism via semaphores, the OCLs and service routines from
figure 7.5 are used.

The service routines SEMAGET, SEMASET, SEMASIGNAL, and SEMAWAIT realize a multi-val-
ued synchronization mechanism. The variable for this synchronization mechanism (here denoted
by svar) is declared by |OCL SEMAPHORE. This variable is called semaphore variable or semaphore
type variable. Scalar variables or array elements are allowed for semaphore variables.

SEMAGET (svar,ivar): The value of the semaphore svar is stored into integer variable ivar. The
value and the state of the semaphore are not changed by this operation.

SEMASET (svar,iexp): The value of the integer expression iexp is stored into the semaphore
svar. The value of the expression must be greater than or equal to 0 (iexp >= 0). If the original
" value of svar was less than 0, all pieces waiting for svar are set to ready state.

SEMASIGNAL (svar): If the value of the semaphore svar is less than 0, one of the pieces waiting
on svar is selected and set to ready state. If the value of svar is greater than or equal to 0, no waiting
piece is set to ready state. In both cases, svar is incremented by 1.

SEMAWAIT (svar): If the value of the semaphore svar is less than or ecjual to 0, the piece which
is executing this call to SEMAWAIT is set to waiting state on semaphore svar. If the value of the
semaphore svar is greater than 0, the execution of the piece can continue. In both cases, the value
of svar is decreased by 1.

Figure 7.6 shows an example, where semaphores are used to simulate a shop where only one

IOCL SEMAPHORE (svar)
CALL SEMAGET (svar,ivar)
CALL SEMASET (svar,iexp)
CALL SEMASIGNAL (svar)
CALL SEMAWAIT (svar)

Figure 7.5

100



SUBROUTINE Initialize_empty_shop
10CL SEMAPHORE (STOCK,EMPT)
COMMON /SEMPH/ STOCK, EMPT
CALL SEMASET (STOCK, 0)
CALL SEMASET (EMPT, <capacity of shop>)
END Initialize_empty_shop

SUBROUTINE CLIENT

10CL SEMAPHORE (STOCK,EMPT)
COMMON /SEMPH/ STOCK, EMPT
CALL SEMAWAIT (STOCK)
<take one item>
CALL SEMASIGNAL (EMPT)
END CLIENT

SUBROUTINE SERVER (N)
10CL SEMAPHORE (STOCK,EMPT)
COMMON /SEMPH/ STOCK, EMPT
CALL SEMAGET (EMPT, NPOSS)
IF ( NPOSS .GE. N ) THEN
<put N items into the store>
CALL SEMASET (EMPT, NPOSS-N)
CALL SEMAGET (STOCK, NAVAIL)
CALL SEMASET (STOCK, NAVAIL+N)
END IF
END SERVER

Figure 7.6

product is sold. The semaphore variable STOCK keeps account of the number of items in the shop.
The value of a second semaphore variable EMPT is the current number of items for which there is
space available in the shop. Whenever a client buys an item, STOCK is decreased by 1, and EMPT is
increased by 1. When the server delivers N items, EMPT is decreased by N, and STOCK is increased
by N. Through calls to SEMAGET within the subroutine SERVER, NPOSS receives the current value
of EMPT (maximum number of items which can be delivered), and NAVAIL receives the current
value of STOCK (number of items in the store). Critical sections should be defined to protect
STOCK respectively EMPT from being modified between CALL SEMAGET and the corresponding
CALL SEMASET. This was omitted for simplicity.

7.4 Barrier

The barrier synchronization follows the principle that pieces generated at a given FORK con-
struct are allowed to pass a specified barrier point only when all of them have reached their barrier
point so that all pieces can simultaneously cross the barrier. Because of the different runtime
behaviour of pieces, it will usually happen that the barrier will be reached by the pieces at different
times. Therefore, incoming pieces will be put to waiting state. After all pieces have reached the
barrier, all of them may resume their execution. Our barrier synchronization does not need any
barrier variable, because a barrier is connected to a fork of pieces and the service subroutines for
parallel processing are aware of the number of parallel pieces. The OCL and service routine for
barriers are shown in figure 7.7. The mechanism is shown in figure 7.8, and an example is given in
figure 7.9.

The lines from !OCL PARCALL WITH BARRIER until !OCL END PARCALL will be called ”pieces—

101



!0CL PARCALL WITH BARRIER

CALL BARRIER

Figure 7.7

CALL BARRIER

pi8081 ———-———v.--.--..-..--.--

walt

CALL BAHRIEI%

Y free

piece 2
free
CALL BARRIER
piece 3 feaaad
walt free
.
. CALL BARRIER %,
piece n Vwan —

When a piece reaches the barrier, it has to wait until all pieces arrived at the barrier. When the last

piece has arrived, all pieces are simultaneously freed.

seesasasae : ndicates wait time

Figure 7.8

PROGRAM main

IOCL PARCALL WITH BARRIER
CALL Gt
CALL G2

I0CL END PARCALL
END main

SUBROUTINE G1
!0CL PARCALL
CALL XY
CALL XY
!OCL END PARCALL

END Gt

SUBROUTINE G2
CALL BARRIER
END G2

SUBROUTINE XY
CALL BARRIER
END XY

Figure 7.9

102




generating sequence with barrier”. The statement CALL BARRIER can only be executed within a
piece which has been generated in such a "pieces-generating sequence with barrier” or by a piece
which descends from a piece generated in such a sequence. If a piece executes CALL BARRIER, the
nearest fork with a barrier is searched and the calling piece is set to waiting state until all pieces
generated at this fork have reached a barrier. When all pieces have reached the barrier, all pieces
are set to ready state and are allowed to proceed.

8. CONCILUSION

As parallel programming becomes more and more important, the Siemens multiprocessors from the
S Series are the only system in which the requirements of the programmer (writing parallel code so
as to have the shortest elapsed time for his own program) are fulfilled without any conflict to the
supercomputer center’s philosophy (with maximum utilization of the resources and therefore best
throughput of the whole system). The S/40 systems formed by a two~fold combination of the Dual
Scalar Architecture meet both requirements. The corresponding programming concept is easy and
powerful and has been oriented to the standard FORTRAN syntax. It has been designed in such a
way that the programmer will be removed as far as possible from the burden of parallelization.

REFERENCES

Siemens, 1990: S Series General Description
Siemens, 1989: S Series Summary Description
Siemens, 1986: FORTRAN77 Reference Summary
Siemens, 1988: FORTRAN77 User's Guide
Siemens, 1988: FORTRAN77/VP User’s Guide

Siemens, 1990: FORTRAN77/VP Vectorization Handbook

103





