Parallel Processing:
A View From ECMWF

Tuomo Kauranne!, Geerd-R. Hoffmann

European Centre for Medium-Range Weather Forecasts
Shinfield Park
Reading, Berks RG2 9AX
England

Abstract

Operational numerical weather prediction requires that all the
computing power available 1is harnessed to the one task.
Therefore, ECMWF became involved in parallel processing as soon
as it became available on large computers. The main operational
programs were restructured to use multitasking on a limited
number of processors, currently 8. The advent of massively
parallel machines, expected in the near future, raises quite a
number of major problems. These areas have been discussed in the
biennial workshops held at ECMWF since 1984. Besides the user
environment, the inter-dependency of hardware architecture and
algorithms was the area which needed most development. Recently,
ECMWF became involved in the Genesis project, sponsored by the
European Community. In this framework an expanding series of
benchmarks is being executed on a number of massively parallel
computers. These benchmarks are used as a basis for extrapolating
the performance of the full model on these machines. First
results from both benchmarking activities and performance
predictions are reported.

148

1. Introduétion

The European Centre for Medium-Range Weather Forecasts (ECMWF)
was established in 1975 as an international organization, at
present funded by 18 European countries. Its headquarters are
situated in Reading, England, and its main functions are (see
[Conventionl]):

a) to develop dynamic models of the atmosphere with a view to
preparing medium-range weather forecasts by means of
numerical methods;

b) to prepare, on a regular basis, the data necessary for the
preparation of medium-range weather forecasts and to make
these data available to the meteorological offices of the
Member States;

c) to carry out scientific and technical research directed
towards improving the quality of these forecasts;

d) to collect and store appropriate meteorological data;

e) to make available to the meteoroclogical offices of the
Member States for their research, priority being given to
the field of numerical weather forecasting, a sufficient
proportion of its computing capacity.

ECMWF runs a ten day global forecast every night. The operational
nature of forecasting justifies a significant effort in achieving
maximum performance from the forecast model. As a result, ECMWF
has wused multiprocessing ever since 1t became available on
supercomputers. Running the operational forecast model on
multiple processors started on a Cray XMP/22 in 1984 and an
increasing number of processors have been employed on its
successors - a Cray XMP/48 since 1986 and a Cray YMP/864 since
1990. The speedups on these machines have been 1.9, 3.7 and 7.3,
respectively, as reported in {[Dent].

The accuracy of a weather forecast i1s not dependent only on the
resolution used in the numerical sclution; the other two major
factors are the accuracy and suffiency of observational data and
the wvalidity of the set of equations and parametrizations used
in the forecast model.

All three factors contribute essentially to the accuracy of a
forecast. All of them are also continually being worked on, which
will push current limits of accuracy further. Hence, on the basis
of our experience so far, there is every reason to keep planning
for increases in numerical resolution and complexity of
parametrization schemes, should we have more powerful computers
at our disposal. Other approaches contributing to the requirement
for more computational power are the increasing use of Monte
Carlo forecasting and the adoption of three and four dimensional
variational analysis schemes.

149

[Bengtsson] gives some estimates of resource requirements for
short and medium range forecasting and climate simulation in the
future. For medium-range global forecasting, in the order of
2. 10* floating point operations, i. e. 200 Tflops, are needed.
Since we should like to compute a forecast in less than two
hours, the sustained speed of the computer running the model must
be about 30 Gflop/s. This is more than an order of magnitude more
than can be realized at the moment. A T400 L60 global model to
be used in medium-range forecasts in the mid-1990’s would, under
similar assumptions, require about 1 Gword of real memory and a
sustained speed of 100 Gflop/s. As many recent supercomputer
procurements for climatological simulation demonstrate, the above
requirements are by no means an upper limit. To attack global
warming and other great climatological challenges, sa sustained
speed of 1 Tflop/s would be required by the end of the decade.

Even though vector supercomputers have improved steadily, the
speed of individual processors does not seem to improve much any
more. A state-of-the-art Cray YMP/8 is about 25 times faster
than a Cray-1 in 1977; of this only a factor of 2 comes from
speeding up processors. The rest is due to parallellism and
increased memory bandwidth. Simultaneously, the speed of
massively parallel supercomputers has improved quite
dramatically, and 1is presently exceeding the speed of vector
supercomputers in some applications. It therefore seems likely
that the supercomputers first to break into the 100 Gflop/s to
Tflop/s terrain in sustained performance will be massively
parallel.

Since 1984 ECMWF has followed developments in massively parallel
computing by arranging biennial workshops on the Use of Parallel
Processors in Meteorology. The fourth such workshop will take
place in 26-30 November 1990 and focuses on software environments
for parallel computers. Since 1989 we have also participated in
the ESPRIT project Genesis, which aims at producing a European
massively parallel supercomputer by the mid-1990’s.

2. Use of parallel processing

So far, massively parallel computers have only been used
experimentally by meteorologists. Part of the reason has been
lack of reliable vendors and guaranteed upgrade paths on the
market: a lack of continuity that is necessary for all production
work. Another reason has been the high programming threshold to
start writing code on such machines. The main reason, however,
has been uncertainty about whether massively parallel computers
can really deliver the superior performance expected from them
on production codes: there haven’t been any true massively
parallel supercomputers on the market until very recently.

The algorithmic side of this last factor has been addressed by
a number of meteorological centres, including National Center for
Atmospheric Research (NCAR), United Kingdom Meteorological
Office, National Meteorological Center in Washington, Royal
Netherlands Meteorological Institute, ECMWF and many

150

universities, by porting kernels and even complete models onto
massively parallel machines during the last five years or so. The
results have invariably been encouraging: good efficiencies have
been reached. Also negative factors have emerged. Programming is
still quite tedious and has to be done again for every new
machine. Also, vector supercomputers have been able to keep ahead
of massively parallel supercomputers in sustainable peak
performance, contrary to common expectations. Hence, despite good
efficiency, in absolute terms, we still have to see a full
operational weather model running faster on a massively parallel
supercomputer than on a vector supercomputer.

We shall look very briefly into two of the problems listed above:
the programming aspect and the attainability of ever faster
sustained speeds on weather models. The latter analysis 1is
carried out with the asymptotic behaviour of large resolution
models on large massively parallel computers in mind. Practical
judgement on the suitability of a particular computer to a
particular model will still have to be done case by case.

2.1 User interface

So far, the most prominent division in programming parallel
computers has been that between shared memory and distributed
memory programming models. Having to write code where references
to different parts of a single data structure have to be made by
explicit message passing, with the associated buffering and other
complications, is very tedious.

Three principal ways to approach this problem have been
suggested. First, there are a number of novel parallel languages
that explicitly include parallelization constructs. Examples are
Occam [Occam], Force [Jordan], Strand [Foster] and Booster
[Paalvast]. Many of these are very elegant and often have sound
parallel semantics, which helps crucially in writing
parallelizing compilers for them. Some of the languages assume
a shared memory, leaving it to the hardware vendor to do the
physical mapping.

The main objection to novel languages is the pre-eminent status
of Fortran in scientific computing. This seems to be one of the
most stable patterns in scientific modelling as a whole, even to
a degree of rejecting parallel extensions to Fortran, as
demonstrated by the Fortran 90 effort. It would therefore be
mandatory for a novel parallel language to provide the ability
to link Fortran modules. Often novel languages would be used
essentially as communication harnesses only.

The second avenue is provided by subroutine libraries and higher
level software packages. The use of the latter is greatly on the
increase and it seems quite possible that scientific computing
will follow administrative computing in rejecting an old
programming language - Fortran in scientific computing, COBOL in
administrative computing - in favour of high level tools -
scientific software in scientific computing, data base languages

151

and system generators in administrative computing. High level
tools are, however, most often written using Fortran and the task
of parallelization is transferred to software vendors.

Some portability can be provided by communication libraries like
COMLIB [Hempel], and the Argonne/GMD Communication Macros
[Bomans]. Also, there are libraries to help in some aspects of
parallelization such as automatic distribution of irregular grid
structures and dynamic load balancing. Even these tasks, however,
would be much easier with some form of shared memory. The third
solution proposed to the programming problem is a real or virtual
shared memory.

As SIMD computers demonstrate, a physically distributed memory
does not necessarily imply distributed memory programming. The
problem is, rather, how to manage the logical complexity of
efficiently mapping a shared data structure to a distributed
memory with limited long-range communication capacity. Reducing
the combinatorial complexity of keeping track of every single
memory reference, as well as avoiding thrashing due to excessive
page traffic, are the key issues in designing a (partial) virtual
shared memory.

Thinking Machines have approached this by parallelizing only
Fortran 90 array constructs. This could be extended to
incorporate references to a limited number of data structures
that could be explicitly declared shared. If their number was
small, the associated combinatorial complexity would be reduced
greatly. Page traffic could be conducted at object, rather than
page, level, allowing for more efficient high wvolume data
transfer. Allowing the user to request access to a segment of a
shared data structure in advance, using e. g. Fortran array
syntax, and imposing the location of any such segment by hand,
if necessary, would be important ways of boosting efficilency
while retaining the convenience of some kind of shared memory.

I/0 may also have to be different on a massively parallel system
compared to a vector supercomputer. The host computer is a severe
bottleneck in centralized file systems. The most economical way
to provide a lot of I/0 capacity on a massively parallel computer
is using distributed SCSI disk systems attached to processing
nodes. These create a problem analogous to a distributed memory.
It would therefore seem natural that they would be used for
memory mapped I/0 alone: to store data structures rather than
files. A conventional file system could be provided at the host
for low bandwidth I/0. Output requested from a supercomputer will
more and more be in a graphical format. This can be more
efficiently handled by a separate video output channel.
Therefore, it may be that the role of explicit I/0 will diminish
in the future, which makes programming simpler.

2.2 Impact of architecture

Apart from programming differences, the most significant
difference between shared memory supercomputers and massively

152

parallel computers is probably data access. Massively parallel
computers are mainly advocated because of superior capacity and
cost effectiveness in computation. Algorithms are mainly studied
from the point of view of parallelizability of computation. In
the case of meteorological models it seems that there is a lot
of potential as far as parallelization of computation goes -
however, there are serious potential problems in data access.

2.2.1. Global data access characteristics of meteorological
algorithms

The spherical shape of the earth is the dominant geometric
anomaly of global weather models, when compared with the
conventional model problems usually used for demonstrating the
efficiency of parallel computers. This causes grid 1lines to
converge near the poles, see Figure 1. This singularity is not
physical but results from mapping the sphere onto a rectangle.
It is unavoidable in any regular latitude-longitude grid. For the
sake of programming and algorithmic convenience, these are the
preferred choice. If not accounted for, grid line convergence
imposes a severe stability constraint on time stepping, making
model runs very expensive.

In local discretizations 1like finite differences or finite
elements, grid line convergence can be compensated for by making
the equations implicit along the latitudes in a neighbourhood of
the poles. This can be accomplished by Fourier filtering or line-
implicit time stepping schemes. Skipping grid lines near the
poles has the same effect.

In spectral methods with spherical harmonics and triangular
truncation, the discrete equations are rendered isotropic
everywhere. The spherical harmonic basis thus automatically
filters the undesired rapidly oscillating modes near the poles
that constrain the stability of the time stepping. Since physics
and the nonlinear terms in dynamics have to be computed in any
case on the associated physical grid, it is necessary to
transform fields between spectral and grid representations. This
is accomplished by a longitudinal Fast Fourier Transform and a
latitudinal Legendre Transform.

Using the next operational resolution, T213 L31, of the ECMWF
spectral model as an example, in grid point space we have 320 x
640 vertical columns, of height 31 each. It will be assumed that
each computational cell in a column hosts 4 prognostic and up to
6 diagnostic variables, except the one in the bottom layer which
has 5 prognostic and 8 diagnostic variables. The total number
of variables in each vertical column is consequently estimated
to be 313. The total volume of data at one time step is 64
Mwords.

In addition to data allocation requirements imposed by the
geometry of the earth, each numerical algorithm has its own
characteristic computational geometry. A rectangular two
dimensional grid with nearest neighbour connectivity is the

153

natural data dependency graph of explicit grid point methods
without Fourier filtering. This assumes that vertical columns are
stored within individual processing nodes. This is Jjustified by
the intense vertical data dependencies in the parametrization.
Fourier filtering introduces data dependency along every full
latitude in a neighbourhood of the poles, see Figure 2.

Spectral methods are global and the dimension of their data
dependency graphs grows logarithmically with resolution. They
display strong data dependency along both latitudinal and
longitudinal directions, requiring transposition in between if
all individual Fourier and Legendre transforms are to be
performed within individual processing nodes. Due to the
necessity of tensor-product grids in spectral methods, this
dependency 1is orthotropical and does not extend beyond the
latitude and the longitude each grid point is on, see Figure 3.
The internal data dependency structure of the Fast Fourier

Transform is a hypercube, which is a compressed butterfly, see
Figure 4.

In other branches of fluid dynamics, multigrid methods have
gained in popularity. It is possible that they will play a réle
also in weather modelling. They are essentially grid point
methods, more often used in connection with finite differences
than finite elements. They share the basic grid-like nearest
neighbour data dependency structure of grid point methods. In
addition to this, multigrid methods also display a pyramidal
dependency structure due to the coarse grid correction procedure
employed by them, see Figure 5. They work on a sequence of grids
with geometrically varying resolution. The data transfers between
these grids impose the pyramidal data dependencies. The spherical
geometry introduces increasingly strong longitudinal data
dependencies near the poles in multigrid methods, too.

It is important to realize that data dependency graphs are
weighted. The weight along each edge is the volume of
communication along it. The basic structures described above have
an essentially uniform weight distribution. This means that the
potential communication volume required at each processing node
grows logarithmically with the number of nodes when implementing
spectral methods, whereas it remains constant with explicit grid
point and multigrid methods. The maximal length of wires needed
to connect nodes remains constant with explicit grid point
methods without Fourier filtering, whereas it grows
proportionately to the number of processors with the spectral and
multigrid methods.

As a whole, global weather models will be increasingly dominated
computationally by physics and nonlinear dynamics, both of which
involve almost purely 1local computations. Therefore, the
effective parallelization of the linear part of the dynamics may
not be crucial to performance in the end.

A particular numerical technique that will most certainly be

employed in spectral and grid point models alike is semi-
Lagrangian advection. Semi-Lagrangian advection is, in principle,

154

similar to a grid point method in its data dependency pattern.
The set of nearest neighbours extends up to five grid lines away,
similar to a high order grid point method. This strains both
communication links and local memory.

2.2.2. Mapping weighted dependency graphs onto parallel
topologies

In an ideal situation a massively parallel computer should have
so rich a topology that any edge in the dependency graph of any
relevant algorithm can be mapped onto a single physical link -
even when the communication volume is taken into account. In
practice, this is seldom the case. A relevant measure of the
success of this mapping is the average or maximal expansion any
edge in the dependency graph is subjected to in the mapping, i.
e. over how many consecutive links edges of the dependency graph
have to be stretched.

Communication over any channel is estimated by an affine function
of the message length:

T(1)=s+bx1 (2.1)

where T(l) is the time it takes to communicate a message oOf
length 1. 1 is expressed in units of 64-bit words. s is the
start-up overhead and b is the inverse bandwidth of the
communication channel, i1.e. the time to communicate a 64-bit
word. The bandwidth is divided by the average expansion whenever
the relevant communication channels are saturated.

The communication times (2.1) over edges in the dependency graph
mapped onto a computer can be thought of as their lengths;
communication start-up time is a lower bound on the length of any
edge. The parallel communication delay is then the length of the
longest path in the expanded dependency graph. Computation can
be incorporated into this framework analogously, with vector
start-ups replacing communication start-ups and speed of
computation replacing bandwidth of communication.

A high start-up means that the edges have a long minimal length.
In meteorological algorithms communication patterns are typically
pre-determined and start-up can normally be accounted for if
computation and communication can be overlapped. It does make a
machine less robust, though, and can be a nuisance in algorithms
with lots of serially synchronized stages with a small volume of
computation and communication like Full Multigrid.

Obviously, dense dependency graphs are more demanding of parallel
interconnection topology. An entirely global data access, a
cross-bar, can be geometrically represented as a simplex (a
triangle in two dimensions, a tetrahedron in three and so forth,

155

see Figure 6). This is the structure of a shared memory computer
with uniform access latency. A hypercube represents the structure
of FFT and other global algorithms with a logarithmic parallel
complexity, as seen from Figure 4, or a shared memory parallel
computer with logarithmic memory access latency like BBN. Both
have a valence that grows with the number of processors. The
growth is linear in a crossbar and logarithmic in a hypercube.
Both are capable of executing an arbitrary parallel program
without data access constraints, the latter with a logarithmic
delay. On a grid, on the other hand, a block of data accessed
globally will have to travel across half the diameter of the
machine, hence consuming a corresponding nmultiple of
communication bandwidth.

Unfortunately, with current technologies (i. e. without optics)
we are likely to see very little increase in valence. The

relevant “"dimensionless" quantity is, in fact, (b stands for
bandwidth) :
f1/2 = bcomp / bcomml (2.2)

which is more likely to increase in the future with faster
individual processors, rather than decrease as required by
increasing valence. Hence, data access will be a most serious
hardware constraint on the use of massively parallel computers
in meteorology.

[Hockney] has termed the above quantity £;,, computational
intensity: a property of an algorithm and a computer alike. For
an algorithm, high computational intensity means there is a lot
- of computation to hide communication delays. For a computer, low
computational intensity means the computer does not require high
computational intensity from the algorithm in order to attain
good efficiency: communication can keep up with computation. The
larger the computational intensity of an algorithm and the
smaller that of the computer, the more effectively parallelizable
the algorithm will be on the computer. The total parallel speedup
can be approximated by:

falg
Seor = scomP (1 - (1+ ?E;&'El/_z')_l) (2.3)
1/2

where
St = total speedup
Scomp = COmMputational speedup
f219,,, = computational intensity of the algorithm

frach, , = computational intensity of the computer

156

In the case of meteorological algorithms - and many others - the
relevant quantity is rather

fexp1/2 = bcomp X €XPay / bcomml (2-4)

where exp,, is the average expansion of edges in the dependency
graph when mapped onto the parallel interconnection topology.
This makes the data access problem even more pronounced on
massively parallel computers with low valence.

The situation can be contrasted to that of a Cray YMP, where
three memory references can be carried out every clock cycle.
Hence, computational intensity is approximately 0.3 - a very good
number, In the case of massively parallel computers we often have
computational intensities in the order of a few hundred, unless
the processors are extremely slow. This makes it of paramount
importance to search for algoritms with high computational
intensities.

Since grid point methods have sparse interconnection topologies,
they would seem more readily sultable for massively parallel
computers. However, even they suffer from Fourier filtering and
in practice the suitability of any particular parallel computer
to any particular algorithm will have to be studied individually.

When the topology is rich enough, spectral methods can be very
competitive, as is demonstrated by the benchmarks reported in
section 3.1. Semi-Lagrangian advection is likely to be used in
connection with both spectral and grid point methods. Despite
almost local access patterns, it 1is heavily dominated by the
volume of communication, requiring a lot of weighted
connectivity.

2.2.3. Local memory access

There 1s yet another constraint on the performance of massively
parallel computers caused by data access requirements. The
relevant dimensionless quantity is local computational intensity

fmem1/2 = bcomp / bmeml (2.5)

i. e. the rate at which the processor needs to access its local
memory. Again, this is a common quantity for both algorithms and
machines. In the case of meteorological algorithms, local
computational intensity is fairly small, i. e. individual numbers
are not used in many floating point operations.

Here, too, a high intensity algorithm and a low intensity
processor are a good match. Unfortunately, massively parallel
computers are normally crucially dependent on slow DRAM memories.
Hence, no matter how fast individual processors might be, the
benefit will be lost without a high degree of memory
interleaving, requiring expensive memory reference logic, or the
use of expensive SRAM memories. The latter 1s a less dense
technology and reduces the maximal size of memories, too.

157

In a sense, we are here facing the current limits of performance
achievable by massively parallel computers on meteorological
algorithms. The speed of individual processors will be limited
by memory bandwidth, and the number of processors by packaging
and our desire to fit the computer into a normal computer hall.

Clearly, careful optimization of system parameters is needed to
attain this limit.

3. Initial results

The following benchmarks have been executed on an Intel iPSC/2
hypercube and a Suprenum parallel computer [Trottenberg] in
collaboration with Saulo Barros, Gesellschaft fiir Mathematik und
Datenverarbeitung in Bonn (GMD) and University of Sao Paulo. We
compare two codes for solving the Helmholtz equation on the
sphere. Several 2-D Helmholtz equations are solved every time
step in all totally or partially implicit global, multilayer
weather models. The combination of having to solve an elliptic
equation and the spherical geometry have been identified as the
most prominent algorithmic problems in implementing operational
global weather models on massively parallel computers.

The first code uses a spherical full multigrid algorithm
developed by Saulo Barros at GMD. To eliminate the geometric
singularity at the poles due to grid line coalescence it uses a
latitudinally implicit line relaxation in a neighbourhood of both
poles. The Full Multigrid algorithm uses an F~cycle with a single
relaxation sweep in both the injection and interpolation stages.
At every cycle, the solution i1s . gradually compressed into a
small grid by alternating relaxation and projection onto a
coarser grid. On the smallest grid, the equation is solved
exactly, after which it is gradually expanded into the full grid
by alternating interpolation and relaxation.

The second code is a spectral code using spherical harmonics as
basis functions, written by the first author and Saulo Barros.
It accomplishes the spherical transformation by a longitudinal
Fast Fourier Transformation, using a vectorized FFT code by Clive
Temperton of ECMWF, and a latitudinal Legendre Transformation
calculated by Gaussian quadrature. The auxiliary routines to
compute the Gaussian weilghts and the coefficients of the
Associated Legendre Functions needed come from the package
SPHEREPACK by Paul Swarztrauber and John Adams of NCAR. The code
performs a symmetric-asymmetric decomposition and uses rhomboidal
truncation.

Because of the strong longitudinal dependencies near the poles,
both codes use a longitudinal stripwise data allocation to
processors. In addition, the spectral code performs a
transposition to latitudinal storage, in order to be able to
execute Legendre transforms within individual nodes.

Both codes have single processor and parallel versions.

Parallelization 1is accomplished using Argonne/GMD Macros and
COMLIB calls to set up and communicate data structures.

158

3.1 Intel iPSC2 results

Both codes run with reasonably good parallel and vector
efficiency on the Intel. The multigrid code has a better
asymptotic complexity but due to its structure is less efficient
to vectorize and parallelize. When solving a Helmholtz equation
on a 128 x 256 grid, the speedup when going from one processor
to 32 processors is 15 for scalar and 9 for vectorized code. The
speedup due to vectorization is 2.3 on a single processor but
only 1.4 on 32 processors. These figures improve significantly
on larger problems.

The execution time of the spectral code is dominated by the
Legendre Transforms. Their structure 1is simple and easy to
vectorize. Parallelization overhead consists of the two
transpositions. The parallel speedup when going from one to 32
processors is roughly 26 for scalar and 25 for vectorized code.
Vector speedup is 3.3 for one processor and 3.1 for 32 processor
implementations. The execution times on the single node case had
to be extrapolated from smaller problems, since there is not
enough memory to store the coefficients of the Associated
Legendre Functions for a problem of this size on a single
processor.

Despite inferior speedups, the multigrid code is faster than the
spectral method in three cases out of the four compared here.
However, the edge it has over the spectral code decreases
dramatically when the code is parallelized and vectorized. In the
scalar single processor case, multigrid is 3.2 times faster than
the spectral method, which is to be expected on the basis of the
suboptimal complexity of the Legendre Transform. When both codes
are parallelized and vectorized, however, the spectral method is
1.2 times faster than multigrid.

The reason for not running comparisons with larger problems is
that in reality we would be solving a large number of independent
Helmholtz equations of roughly the slze used in these benchmarks,
one for each vertical layer. Besides, the spectral solver has to
store the coefficients of the Associated Legendre Functions,
which takes up all available memory already at this resolution.
Both codes would benefit from longer vectors in the three
dimensional case.

3.2 Suprenum results

On the Suprenum the work has barely begun. The only results so
far are for the scalar verslion of the spectral code. On a 32 x
64 grid the parallel speedup when going from one processor to
four is 3.1. The effect of vectorization is expected to be even
more dramatic on the Suprenum than on the Intel, due to a larger
speed difference between the wvector wunit and the scalar
processor.

A remarkable effect in global meteorological models is that we

159

observe a superlinear growth in speedup, measured in Mflop/s,
when model resolution is scaled up with the number of processors
to match the available memory. This is due to increasing vector
lengths, facilitated by the necessity of storing every latitude
and longitude in a single processor at the appropriate stage of
the solution. When the number of processors is increased and the
problem simultaneously scaled up, we store fewer but longer
vectors in every processor.

4., Performance predictions

Along with benchmarking kernels, an effort has been made to
estimate the performance of the full operational model on some
massively parallel computers. A fairly detailed estimate was
computed for the Suprenum on the basis of its hardware
characteristics. These characteristics ignore all system software
overheads. The aim is to evaluate the potential of Suprenum in
running global operational weather models in the case in which
both the code and the run-time environment are optimally tuned.

The figures calculated are no substitutes for actual performance
measurements, but since the task of porting the present ECMWF
operational model or any of its algorithmic alternatives to an
architecturally very different computer is formidable, they try
to provide a somewhat more realistic basis for performance
comparison with existing wvector computers than mere peak
performance claims or dusty deck performance measurements on
each. The former tend to overestimate the power of massively
parallel computers, whereas the latter give somewhat undue credit
to vector computers because of their wider applicability and
better performance robustness on general Fortran programs.

The estimates are based on a still somewhat superficial analysis
of the algorithms and the Suprenum and are, therefore, liable to
change in the course of a more detailed investigation. We also
hope to be able to incorporate estimates for some alternative
formulations of the model equations later, in order to be able
to assess the effect of machine architecture on the choice of
algorithm, assuming that they all produce meteorologically
equivalent forecasts.

Suprenum has 256 processors, arranged in 16 clusters of 16
processors each. The processors within each cluster are connected
by a fast cluster bus, whereas the clusters are connected by 16
slower Suprenum-buses, being logically arranged in a four by four
square. Each node has about 1 Megaword (64-bit) of local memory.
The total memory is 256 Mwords.

In general, the estimates are based on the following simplifying
assumptions:

1) Communication over any channel is estimated by the affine
function of the message length (2.1).

2) Computation is always performed at a nearly optimal rate of

160

8 Mflops per processor. The peak performance of the Weitek
processors used on the Suprenum 1s 20 Mflops, but in the
case when every triad-type operation requires two operands
from the main memory for each result, the peak is only 10
Mflops. The peak performance of Suprenum 1s consequently 5
Gflop/s or 2.5 Gflop/s, respectively. 8 Mflops per node
corresponds to a typical maximum speed measured, so far, in
linear algebraic single processor benchmarks of the
appropriate type. To attain this speed, the code must be
vectorizable and the operands must be arranged to have
small stride in the memory, since, otherwise, page traffic
on a virtual memory machine will adversely affect the
performance. In matrix multiplication, 1. e. Legendre
Transform, however, the speed is more likely to be 12 to 13
Mflop/s per processor.

In most parts of the algorithm, the critical resource is either
the bandwidth of the global Suprenum-buses, or the start-up and
bandwidth of communicating any individual message between two
processors. The delays in the latter are caused by the system
overhead to set up a logical communication link, and the delays
internal to processors due to memory access during communication.
The cluster buses are about twenty times faster than the inherent
delay in any single message. Hence, they are never a bottleneck,
as they can support simultaneous communication of all the
processors in each cluster. The global Suprenum-bus 1s accessible
from individual nodes through a special communication node.

The total time to integrate the model for 15 minutes was
estimated at 25.2 s. The computational intensity thus achieved
would be 70 % and the sustained performance would attain 1.4
Gflop/s. This is roughly comparable to the performance expected
to be seen on the 8-processor Cray YMP, where a slightly
different version of the model has already been tested with a
sustained performance of about 1.2 Gflop/s.

5. Outlook

The market of massively parallel computers 1is still wvery
unsettled. Companies come and go almost on a monthly basis and
only a few have had sustained presence. Virtually all sales of
massively parallel computers so far have been for experimental
purposes. Typically, these have been heavily subsidized from
public funds. There are signs that this pattern is beginning to
change.

Due to the difficulty of programming and lack of portability, as
well as unrobustness of performance, due mainly to lack of global
communication bandwidth, it seems that massively parallel
computers may never attain the same generality as present vector
supercomputers. Instead, they will be used as special purpose
scientific and engineering engines. Even though not able to
execute dusty deck Fortran codes efficiently, they seem to be
general enough for solving most partial differential equations
quite fast. These continue to form the hard core of scientific

161

and engineering computing, in particular numerical weather
prediction.

Massively parallel computers will have to compensate for the
above mentioned deficiencies by providing clearly superior peak
performance and performance/price ratio. An approximate rule of
thumb might be that this factor must be around ten before the
majority of scientific programmers start to consider massively
parallel computers seriously for their production work. Good
programming tools would, of course, speed up this process.

It may be that in the future current and massively parallel
supercomputers will increasingly coexist. A supercomputer site
like ECMWF generally needs some robust supercomputer capacity in
addition to a fast model engine. Getting data out of a massively

parallel computer may also be a non-trivial task. Having a fast
front-end will be very helpful.

Networking will give more and more researchers access to a wide
range of computers. This leads quite naturally to increasing
specialization among computing facilities. Hence, provided that
massively parallel computers can realize the expectations of
Teraflop range performance placed on them, there will be a niche
for them to succeed even commercially. Specialized supercomputer
sites like operational weather forecasting centres may well be
among the first to benefit from this.

6. Literature

[Bengtsson] L, Bengtsson:. Computer ‘Requirements for
Atmospheric Modelling. In: Multiprocessing in
Meteorological Models. G.-R. Hoffmann, D. F.
Snelling (eds.). Springer, Berlin Heidelberg New
York 1988. pp. 108-116. :

[Bomans] L. Bomans, R. Hempel: The Argonne/GMD Macros in
FORTRAN for portable parallel programming ' and
their implementation on the Intel iPSC/2.
Arbeitspapiere der GMD 406, Sankt Augustin 1989.
Submitted to Parallel Computing.

[Convention] Convention establishing the European Centre for
: Medium-Range Weather Forecasts. Her Majesty’s
Stationery Office Cmnd. 5632. London June 1974.

[Dent] D. Dent: The ECMWF Model: Past, Present and
: Future. 1In: Multiprocessing in Meteorological

Models. G.-R. Hoffmann, D. F. Snelling (eds.).

Springer, Berlin Heidelberg New York 1988. pp.

369-381.
[Foster] I. Foster, S. Taylor: STRAND: New concepts ih
: parallel programming. Strand Software

Technologies, Watford 1989,

162

[Hempel]

[Hockney]

[Jordan]

[Occam]

[Paalvast]

[Trottenberg]

R. Hempel: The SUPRENUM Communications Subroutine
Library for Grid-oriented problems. ANL-87-23.
Argonne National Laboratory, Argonne 1987.

R. Hockney, I. Curington: £,,,: A parameter to
characterize memory and communication
bottlenecks. Parallel Computing 10 (1989) pp.
277-286.

H. Jordan, M. Benten, G. Alaghband, R. Jakob: The
Force: A highly portable parallel programming
language. CSDG 89-2, Department of Electrical and
Computer Engineering, University of Colorado in
Boulder 1989,

Inmos Limited: Occam? reference manual. Prentice-
Hall, New York 1988,

E. Paalvast, A. van Gemund, H. Sips: A method for
parallel program generation with an application
to the Booster language. To appear in: 1990 ACM
International Conference on Supercomputing, June
11-15, 1990, Amsterdam.

U. Trottenberag: Suprenum - the concept.
Supercomputer 30, 1989, pp. 5-19.

163

L

1"!‘;’)
i’ A
2

&

o
i

IR
A A
SR ..w..z .M?WMVAM, "
2 R SN
4 .W..,. /_,M.y/ﬂw) ,/
)
N
S

o

o

3

data
tance

Mutual
1l to the dis

sphere.

il0na

a

on
ly proport

ines
d points.

Coalescing grid 1i
dependency is inverse
between two gri

1

ig.

164

Fig.

Grid topology of an explicit scheme. Thick lines show
data dependency patterns when the grid is mapped onto
a sphere and Fourier filtering is used.

165

£

£\

/\\\J/\\//‘\\j

Fig. 3 A global two dimensional tensor product basis is a

tensor product of two one dimensional global bases:

every point is dependent on every other point on the
longitude and the latitude it is on.

166

Fig.

4

Fast Fourier Transform as a hypercube. The butterfly
depicts data flow in the FFT. If we compress the
butterfly and insert an edge between all nodes that
need to communicate, the emerging pattern is a one
dimensional rendering of the edges in a hypercube.

167

a4

Sl S L L LS
A /I AR A A A4
[T A 777 7
ARV | V4 | AR ///J/

L LV VL LS

Flig. 5 Pyramidal topology of a multigrid algorithm. Only some
of the vertical edges are shown.

168

Fig.

6

A cross-bar connection between four processors is a
two dimensional rendering of a simplex. In the case of
four processors this is a tetrahedron. :

169

