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ABSTRACT
This paper analyses the statistical structure of the errors of the
short-range wind forecasts used in the global data assimilation system at

ECMWF, by verifying the forecasts against radiosonde data over North America.

The theory of two-dimensional homogeneous turbulenée is used to partition the
perceived forecast errors into prediction errors which are horizontally
correlated, and observational errors which are assumed to be horizontally
uncorrelated. The theory further partitions the wind prediction errors into
three components viz. large-scale, rotational and divergent components, énd
provides a spectral description of the covariance and cross-covariance
functions for stream function and velocity potential. The calculatiéns also
provide an estimate of the vertical error covariance matrices for prediction
error and for radiosonde observational error; by which we mean the combined

effects of instrumental error and errors of representativeness.

The basic assumptions are that the forecast errors are horizontally

homogeneous and that the observational errors are horizontally uncorrelated.

Several important results are found. The wind prediction errors are
comparable in magnitude with the wind observation errors. The’prediction
errors are dominated by the synoptic scales, but there is a substantial large
scale wind error which reverses phase between the stratosphere and
troposphere. The synoptic scale errors are largely non-divergent in the
troposphere. There are good grounds for increasing the resolution of the

analysis system, both in the horizontal and the vertical.
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1. INTRODUCTION

This paper analyses the statistical structure of the mid-latitude errors of
the short-range wind forecasts used in the global data assimiiation system at
ECMWF, by comparing the forecasts with verifying radiosonde data over North
Bmerica. As a by-product the method provides estimates of the observational
error covariance matrices for radiosonde winds and heights. The structure of
the height and the height-wind error covariances is analysed in a companion

paper (Ldnnberg and Hollingsworth 1985, referred to as Part II).

Observational data.giﬁes point information on forecast errors. Xnowledge of
the statistical structure of the forecast error is essential to make a good
interpolation of the multi-variable observational information to a
three-dimensional grid, so as to produce the analysis from which the next
forecast can start. The statistical information is used in a variety of
ways. It prescribes the length scales and spectra of the vertical and
horizontal correlations and cross-correlations, it determines the extent and
scale dependence of constraints such as non-divergence or geostrophy, and it
determines £he relative weights of different types of data and of the
forecast model. .In a different context, the statistical information plays a

vital role in tuning the data-checking algorithms.

In addition to its function as an interpolation procedure, the optimum
interpolation (O/I) analysis acts as a filter on the observational data. If
d and a represent the vectors of observed and analysed values at‘a set of
observation points, then one may write

a=(+Q7 pd |
where P is the prediction error correlation matrix defined by the positions
of the observations and the type of variable observed, and Q0 is the

corresponding observation error correlation matrix, normalised by the



magnitudes of the prediction errors (Gandin 1963, Rutherford 1972, Schlatter
1975, Bergman 1979, Lorenc 1981).
If (Ei) are the eigenvectors of P, with eigenvalues Xi, and if a,s di denote

the projections of g,é on Ei' then

~ A ~
a, = ————i—z d
i Ai+o i

provided the observational errors are random, uncorrelated, and of equal
(normalised) amplitude 02 i.e. provided 2=02 I where I is the identity
matrix. Results of this kind are well known in geophysical inverse theory
(Zlotnicki et al. 1982).

This result clearly shows the filtering effect of the analysis. Components of
the observed field with large eigenvalues are well analysed, while those
components with small eigenvalues are damped. As discussed by the authors
cited above, the filtering will be optimal, in the sense of optimally
extracting all useful meteorological information from the observations while
eliminating noise, if the prediction error structure functions are accurately
determined from the forecast errors. BAn accurate and complete empirical
determination of the forecast error and the observation error covariance

functions is therefore essential (Seaman 1977).

Multivariate analysis constraints are widely used in current operational
practice. As shown by Daley (1983), the imposition of constraints such as
non-divergence or near-geostrophy can have a substantial effect on the
resulting analysis by modifying the response characteristics of the analysis
matrix. The present work presents results which justify some of the
constraints used in current analysis algorithms, and indicates those aspects

of current practice where change would be beneficial.



The @perational optimal interpoiation analysis system at ECMWF up to May 1984
uséd*a Gaussian correlation for the height and stream function fields; it
applied non-divergence and geostrophic constraints equally on all scales; and
it fixed the horizontal scale of the structure functions through a single
disposable parameter Lc. The statistical basis for much of the formulation
was based on the results of Rutherford (1272) and Hollett (1975), together
with a certain amount of empiricism. The resolution of the analysis was
inadequate, especially in data rich areas, and there were important
difficulties in the analysis of the large scale wind field in the tropics.

One aim of the present work is to provide a sound statistical basis for a

refinement of the analysis system, leading to more accurate analyses.

This paper uses the theory of two~dimensional turbulence to determine the
correlation structure of the forecast errors in the wind field, subject only
to the assumption of local homogeneity in the horizontal. The method
partitions the wind forecast errors into rotational and divergent components,
and provides a spectral description of the properties of the covariance and
cross—-covariance functions for stream function and velocity potential. In
Part II a complete analysis of the height-stream function and height-velocity

potential covariances is presented.

The main features of the results are that the forecast errors are comparable
in magnitude with the observation errors, and that there are good grounds for
increasing the resolution of the analysis system, both horizontally and

vertically.
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Section 2 discusses the assimilation system, and the data used for the study.
The differential equations governing the wind-wind correlations are derived in
Section 3. Computational aspects of the solutions are discussed in Section 4.
Section 5 deals with the prediction errors and the observational errors of the
wind field. Sections 6 and 7 discuss the horizontal and vertical structures
of the non-divergent and divergent wind errors respectively. The results are

reviewed in the final section.
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2. THE ASSIMILATION SYSTEM AND THE STATISTICAL DATA

The assimilation system is an intermittent insertion system consisting of
three main steps ~ the analy;is step, the initialisation step, and the
forecast step. The analysis system is described by Lorenc (1981) and is an
application of the optimal interpolation technique discussed by

Gandin (1963), Rutherford (1972), Schlatter (1975) and Bergman (1979).
Similar methods are used in several operational centres (Gustavsson 1981).
The notable feature of the ECMWF implementation is that the analysis is
performed for a large number of grid-points and variables simultaneously,
which requires the éelection of a large quantity of data for each analysis
volume. The demands on computer power are correspondingly large; a typical

analysis requires the inversion of several thousand matrices with orders

between 100 and 200.

The initialisation scheme is an application of the non-linear normal mode
scheme proposed by Machenhauer (1977), and described by Temperton and
Williamson (1981), and Williamson and Temperton (1981), and has been modified

to include diabatic effects by Wergen (1982, pers.comm.).

The model used to produce the 6-hour forecast is the ECMWF grid—-point model
(Burridge and Haseler, 1977); the physical parameterisation package has been

described by Tiedtke et al. (1979).

The ECMWF assimilation system has been used to produce global IIIb analyses
for the FGGE year (Bjorheim et al. 1982, Bengtsson et al. 1982). The
response of this and other assimilation systems to the FGGE level II-b data

has been compared in Hollingsworth et al. (1985b) and Arpe et al. (1985).
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The data studied here are the differences between the observations and the
6~12 hour grid-point model forecasts for the period 1 January-30 March, 1983.
Only radiosonde data for 1200GMT is used; a particular station is used only

if a minimum of 60 acceptable reports were available from the station.
Acceptable means that the data was accepted as probably correct by all the
stages of the operational quality control procedure. Attention is
concentrated on the North American region between 30°N and 60°N. Later papers

will consider results for other regions.

The mean difference 5etween the station reports and the forecast is removed
separately for each station. The average variance of the resulting ensemble
of station time series is defined as the ensemble mean of the station
variances. We use the notation <a,b> for the correlation of a with b,
cov<a,b> for the covariance and Ea' E, for the standard deviations so that

b

cov<a,b> = EaE <a,b>

b
For vectors, we use the notation cov<c.d> to denote the sum of the cross-
covariances of their components. We say 6-12 hour forecasts for the same
reasons as Hollett. Satellite data was not used over land below 100 mb, and
Airep data is unavailable over land. The data input in the analyses over
North America consisted of Synops and Temps at 0000 and 1200 GMT, but only
Synops at 0600 and 1800 GMT. Since the Synop data mainly affects the lower
troposphere, it is unclear whether the forecasts for the upper troposphere and

lower stratosphere should be called 6-hour or 12-hour forecasts.
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3. THE STATISTICAL STRUCTURE OF THE WIND FIELD ERRORS

3.1 Covariances of height and wind

In most current implementations of statistical analysis (0/I) it is assumed
that the <¢,¢> and <¥,¥> prediction error auto-correlations are identical,
that the <X,X> correlation is identically zero, and that the <¢,y> correlation
can be expressed in a single geostrophic coupling parameter, U, which may vary
with latitude (Bergman 1979, Lorenc 1981); (here ¢, ¥, X represent the
geopotential, stream function and velocity potential). BAs discussed by Daley
(1983), a complete representation of the error field requires six correlation
functions: <9,¢>, <P, ¥>, <X, x>, <b,¥>, <b,x>, <¥,x> plus three variances. If
the statistics are horizontally inhomogeneous, then each of the correlations

is a function of six wvariables (x1,y1,p1; 'Y

x2 2’P2)' If one assumes
horizontal homogeneity then they are functions of four variables (r,9, p1,p2),
where r,8 are the polar coordinates of the displacement vector between the two
points; the isotropic component is a function of 3 variables (r,p1,p2). The
verification of the forecasts against the radiosonde data enables one to
calculate the correlation functions <$,¢>, <u,ud>, <v,v>, <u,v>, <p,u>, <¢,v>.
From these functions one may calculate the six correlation functions involving
$, ¥V, X by solving the differential equations which relate one set to the

other. The generality introduced by Daley is needed for a complete

understanding of the forecast error structures.

3.2. Mathematical formulation of the homogeneous problem

To discuss the statistical structure of the forecast errors in the wind field
we apply the formulation introduced by Daley (1983) to general homogeneous
conditions. From the relationships
= - + = + 3.1
u wy Xy and v wx Xy' ( )

expressions in terms of the stream function, velocity potential and their

cross—correlation are introduced as follows
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Y2<p,¥>= F(r,8)
82¢x,x>= G(r,0) | (3.2)
Y8<¥,x>= H(r,9)
so that, by analogy with Daley (1983)
<u,ud>= —(Fyy+Gxx-2ny)

<v,v>= —(F +G +2H ) (3.3)
XX yy Xy

<u,vr>= (F -G

-H +H )
Xy Xy XX Yy

This implies that Y2 and 82 are the fractions of the synoptic scale vector
wind prediction error variance arising from the non-divergent and divergent
wind respectively, each multiplied by the square of the corresponding
component length scale (see Sect. 4.4). This is another way of saying that

= § = .
Y Ew/El’ EX/E2 where E¢' EX, EQ are the rms amplitudes of ¥, ¥, and the

synoptic scale wind component.

The second derivatives of F,G,H are therefore non-dimensional; the use of the
component length scale rather than the turbulent microscale simplifies the

algebra.

A necessary consequence of homogeneity is that <u,v>=<v,u>; this therefore
suggests a test for homogeneity. Adding and subtracting the first two

relations one can cast the equations in the more symmetrical form

a,u> + <v,v> = = V2(F+G)
92 32 3%n
<u,u> = Kv,v> = - ('a—l;z' - a—}'{'z') (F-G) + 4 ﬁ—x—a}—] (3.4)
32 92 32
<u,v> = m (F~-G) + ( §§2' - 5‘;2)H
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where V2 is the Laplacian. As noted by Buell (1972) the sum <u,u>+<v,v> is a
scalar, being the trace of the velocity correlation matrix, and is therefore
invariant under coordinate transformations. This suggests that the equations
be transformed to polar coordinates, using the longitudinal and transverse

velocity components. The equations (3.4) then become

-V2 (F+G) = <R,8> + <t,t>
L1(F—G)—4L2(H) = <&,%> - <t,t> (3.5)
L2(F—G) + L1(H) = =<4 ,t>
y2 = 2Rr2 ; 2 .__lg_ 14
where r R + 2R + T<, R T ar ! T ~ 36

L. = r2r? - T2

H
|

1
= T(— - rR
2 (r )
£,t are the longitudinal and transverse components of velocity, parallel to

and orthogonal to the direction between two measurement points.

These are the partial differential equations for two-dimensional homogeneous
turbulence. The radial derivatives of the empirical correlations tend to
zero at large separations, so it is reasonable to pose expansions for the

unknowns F, G, H in terms of cylindrical harmonics

g =y cos md ) g (k_ x/D)

sin md mn m
n

where the wavenumbers kmn are specified by zero derivative boundary

conditions at r=D, where D is some conveniently large number. Approximate

solutions for F,G and H are then readily found by specifying the truncation

of the series, and finding a least squares fit to the empirical velocity

correlation data on the right of (3.5). These computational considerations

are discussed in Section 4.
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3.3 The isotropic problem

The equations for the isotropic component are derived by assuming that %@ =0
in (3.5):

-(r2R? + 2R) (F+G)

<R, > + <t,t>

r2Rr? (F=-G)

<L, A> - <&, > (3.6)

—r2R2H

<L ,t>

If one assumes that the error wind field is purely rotational then the
equations (3.6) degenerate into one equation for the <y,y> correlation,
together with two consistency conditions on the wind-wind correlations, which
must be simultaneouély satisfied. The consistency conditions have been
discussed by Buell (1972), and a similar set of conditions is presented in
Panchev (1971). Brown and Robinson (1979) have used the assumption of
non-divergence in this form to estimate the spectrum of the wind field from

radiosonde observations.

The first two equations of (3.6) may be added and subtracted to yield the

equivalent form

-RF - (r2RZ2+R)G = <&,4>
-(r2R24+R)F-RC = <t,t> : (3.7)
-r2R%H = <L,t>

where the isotropic component of the observed velocity correlations is implied

on the right hand sides.

The equations (3.7) subsume as special cases two well known results in the
theory of homogeneous turbulence. If the flow is non-divergent then &=H=G=0,
and the velocity correlation tensor is determined by the single function F.

The longitudinal and transverse correlations are related to F by

-RF <L, 8> ‘ (3.8)

Il

—(r2R%2+R)F <t , >
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Elimination of F leads to the well-known differential relation between the
longitudinal and transverse correlations of incompressible isotropic
turbulence (von Karman and Howarth 1938), due allowance being made for the

difference between two and three dimensions (Obukhov 1954, Hutchings 1955).

In a symmetrical way, if the flow is irrotational, then y=H=F=0 and the
velocity correlation tensor is determined by the single function G. Then the

longitudinal and transverse correlations are given by

I

-(r?rR2+R)G <L, 0> (3.9)

-RG

<t,t>

Elimination of G leads to the differential relation. between the longitudinal
and transverse correlations of irrotational isotropic turbulence (Obukhov
1954), due allowance again being made for the difference between two and

three dimensions.

Obukhov (1954) showed that if a three-dimensional random field consisting of
both solenoidal (non-divergent) and potential (divergent) velocities is
homogeneous and isotropic, then the solenoidal and potential components of
the flow are uncorrelated. A simple extension of his argument shows that the
same result applies in two dimensions. However, as pointed out by Panchev
(1971) the conditions of the theorem are strict, as they require not only
homogeneity and isotropy of the solenoidal and potential velocity fields, but
also invariance of their joint correlation functions and tensor moments to a
complete set of translations, rotations and reflections. Hence there is no
inconsistency in positing a joint correlation, H, between the isotropic
components of the Y and X forecast errors, as we have no a priori information

about their joint correlation.
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3.4 The anisotropic components

The isotropic component of the forecast error ig familiar from earlier
studies (Rutherford 1972, Hollett 1975). The anisotropic part has not
received as much attention from those engaged in numerical weather
prediction. The corresponding components of the climatological fields have
been the subject of many studies (Buell 1971, Panchev 1971, Julian and
Thiebaux 1975, Buell and Seaman 1983). By definition a homogeneous
auto~correlation function must be periodic in the azimuthal coordinate, with
period m. Thus auto-correlations of variables‘on the same horizontal level
must be expanded iﬁ Fourier-Bessel series using only even azimuthal harmonics.
This restriction does not apply for correlations between variables at
different levels, or different variables at the same level, and such
expansions will generally require all the azimuthal harmonics. It is easy to
see that the m=1 components can describe the vertical tilt of the forecast
errors, while the m=2 components can describe correlations which are elongated
along a certain horizontal direction, and therefore have an elliptic

character. The anisotropic components will be the subject of a later study.

3.5 Separation of prediction and observation error

Given the isotropic part of the representation, one may extrapolate the
horizontal correlation for perceived forecast error to zero separation, and so
estimate the random observation errors for the radiosondes, which are assumed
to be horizontally uncorrelated and of uniform magnitude (Hollett 1975). This
is a good assumption, and is widely used in this type of work. It should be
clearly understood that the observational error derived in this way includes
both instrumental error and errors of representativeness, also known as

sampling errors.
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3.6 Multilevel correlations

In addition to determining the horizontal correlations of forecast errors for
winds at the same levels, one may determine the horizontal and vertical error
correlations by solving equations of the form (3.4) for the thermal wind
errors for all possible combinations of levels. The extrapolation of these
expressions to the origin enables one to partition the wvertical covariance
matrix into observational and prediction error parts. To see this, let
Agi,Agj denote the vertical difference between the perceived wind
forecast errors 91, gz, at horizontal points i,j and levels 1 and 2;
AEi' Agj denote the corresponding prediction errors;
Agi, Agj denote the corresponding observation errors.
Then the correlation of the perceived thickness or thermal wind error may be

expanded as
cov<he,. Ae > = cov<(lAp, + Ab,).(Ap. + Ab,)>
=i = P 24 25 =5

= cov<Ap,.Ap.> + cov<Ab,.Ab.>3, . (3.10)
=1 =] -1 =] 1j
Given the functional representation of the isotropic part of the wind shear
covariance, one may extrapolate to the origin and derive the prediction error
and observation error for the wind difference between levels 1 and 2. This
algorithm is applied for all possible pairs of levels 1 and 2. One can then
derive the vertical covariance matrix for the observation error and prediction

error of wind, given that the relevant variances have been calculated already

at each level.
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Since the wind difference between two layers is a vector quantity, the use of
the equations in this way is a legitimate procedure provided the assumption of

homogeneity is wvalid for the wind shears between layers.

This method of splitting the vertical covariance matrix into its observational
and prediction components is quite different from the method used by Hollett
(1975). Hollett used the simplifying, but unjustified, assumption that the

prediction and observation covariance matrices had the same eigenvectors.

3.7 Discussion

The equations of two-dimensional turbulence introduced by Daley (1983) for
the study of forecast errors have been transformed in a way which clarifies
the physics of the problem and simplifies computation. The transformation
also shows that several well~known results in the theory of isotropic
turbulence are special cases of the equations used here. The equations can
be used to derive the three-dimensional isotropic and anisotropic auto- and
cross-correlations of ¥ and X from empirical data on the two-point velocity
correlation tensor. In addition the vertical covariance matrix for

radiosonde observational errors is readily found.
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4. COMPUTATIONAL CONSIDERATIONS IN THE DETERMINATION OF PREDICTION AND
OBSERVATION ERRORS

In this section we discuss the computational considerations involved in the
determination of the prediction errors and observation errors for the wind

field.

4.1 Method of solution and positive definiteness

As usual when discussing the statistical structure of forecast errors one
assumes that the errors are homogeneous. Even if the covariance functions
are inhomogeneous, the corresponding correlgtion functions are frequently
more homogeneous, as noted by Panchev (1971, p311), Rutherford (1972), and
Julian and Thiebaux (1975). Where possible, we work with the correlation

functions. The question of homogeneity is discussed further in Part II.

Given the assumption of homogeneity, a two-point correlation F(x1,y1;x2,y2) is
a function only of the displacement between the points, and may be expressed

as F(r,0), where

- ) o 1212
r = [(x1 X2) + (y1 y2) ]
Y=Y
6 = tan"1 [ 2_ 1]
X2 X1

According to standard theory (Khinchin (1934), Batchelor (1953), Gandin
(1963), Buell (1971,1972), Rutherford (1972)) the necessary and sufficient
condition that F(r,9) should be the auto~correlation function of a homogeneous
random process is that F should be exprgssible in the form

F = J F(k) exp(ik.r)dk

”~

where F(k) is square integrable and positive semi-definite. In two dimensions
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the Fourier transform can be re-written as a Hankel transform (Gandin 1963,

Rutherford 1972) so that

F(r,9) = 2 am(r) cos mb + bm(r) sin m@ (4.1)a
m

where am(r),bm(r) are expanded in Bessel functions as

am(r)

) R J (k) ‘ (4.1)b
n

bm(r)

) B_ 3 (k) (4.1)c
n

A typical calculation begins with determining the empirical values of a
particular correlation for all possible pairs of stations. The correlation
data is then composited using the assumption of homogeneity. If necessary
for reasons of space, the correlations may be averaged over distance
intervals or 'bins' as discussed below. A least squares procedure is used to
fit a Fourier-~Bessel series, or a derivative of a Fourier-Bessel series, to
the empirical correlation data. The condition of positive definiteness for an
auto-correlation then becomes a requirement that the expansion coefficients
should be positive in the isotropic part of the expansion, and that the
implied phase functions should be continuous in the anisotropic part of the
expansion. For the truncated Fourier~Bessel expansion, boundary conditions
must be specified at some finite distance D; these are discussed later. For
the moment all we need is that the basis functions should be complete and

orthogonal.

(a) Coordinate systems

In discussing the statistical properties of forecast errors on a sphere, we
use spherical geometry to calculate distances and directions. When dealing
with the autocorrelation functions of homogeneous isotropic processes on the

sphere one should use the lLegendre functions as basis functions
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(Obukhov 1954). Since one is dealing here with rather small areas, of typical
dimension 3000 km, Fourier-Bessel series expansions rather than spherical
harmonic expansions are used for computational convenience. The effects of

sphericity are nevertheless fully accounted for in the representation.

(b) Averaging of correlations

In many of the calculations the correlations are averaged over certain
distance ranges or bins. In calculating these bin averages, Fisher's
z-transform is used (Fisher 1921). This procedure has the property that it

preserves the distribution of the correlations about their local mean.

To test the stability of the calculations, some of the more sensitive

quantities were calculated with the bin-width varying between 10 and 100 km.
A variation of the averaging width between these limits produced a 1% change
in the value of the coefficient of the 10'th mode of the height correlation.
In this, as in most other features of the calculations, the stability of the

calculations was quite satisfactory.

4.2 Boundary conditions

The choice of boundary conditions to be applied to the representation
determines the wavenumbers kmn' It is convenient to impose the boundary
conditions that the radial derivatives of the <¥,¥>, <x,x> and <¥,x>
correlations are zero at a sufficiently large distance D, which is determined
in practice by requiring that the wind-wind correlations are essentially =zero

for r>D.
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The correlations involving the wind become very small for station separations
greater than 1500 km. The parameter D may be thought of as a truncation
parameter for the analysis system, defining the diameter of the data search
volume. As discussed by Phillips (1982) an ideal data selection algorithm
would use all observational data in a single calculation. Since this is not
feasible, some compromises have to be made in practical analysis schemes.

The fact that the correlations involving the winds are small for separations
larger than 1500 km suggests that the data search radius should be 1500 km.
If this is adopted then one needs to be able to calculate correlations over

twice this distance. A value of 3000 km is therefore used for D.

Thié suggestion accords reasonably well with our current practice. In
~analysing a volume of horizontal dimension 660 km, a search for data is made
as far as 1200 km from the edge of the box, if closer data cannot be found.
This limit was originally chosen because with a Gaussian structure function
(Lc=600 km) for height and wina, the correlation between an observation at the
centre of the box and an observation at the limit of the search radius is
rather small; moreover experience showed that this search radius stretched
computer resources to the limit. With this boundary condition the leading
term in the isotropic part of the expansion‘is a constant term independent of
r. It represents the mean value of the correlation over the domain

(Hildebrand 1962,p227).
The choice of the truncation parameter D has a number of important

consequences for the analyses, both from a practical and from a theoretical

point of view. For a scalar variable like height, the local analysis can
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respond to information in the data on scales between the upper bound of
resolved scales (dependent on D), and the lower limit of resolution which is
determined by the smallest inverse wavenumber k&l which is retained in the
truncated expansion, and by the data density. Information on scales larger
than the upper bound will be mainly projected on the constant term, which
physically corresponds to errors in the mean height over the selection area.
Just as for the height field, the constant term in the wind-wind correlations
occurs because there are components of the wind forecast errors which are of
such large scale that they are essentially constant over a domain of dimension
D. If 2 = £O+£S, £ =to+ ts
where the subscripts o,s denote the large-scale and synoptic components
respectively, then

cov<d &> = cov<®?> + cov<® ,8 >

o s''s

cov<t,t> = cov<t?> + cov<t ,t >
(] S s

Because of the truncation of the diameter of the selection radius to D, there
are large-scale components in the wind correlations which have no
corresponding term in the stream function or velocity potential correlations.
It follows that the derivations in Section 3 are applicable only to the
synoptic scale components. The large scale components must be accounted for
in the least square calculations, but they do not enter the differential

relations between the variables.
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4.3 Degrees of separability

A vertical correlation matrix may be defined separately for each term in the

horizontal expansion, i.e. for each horizontal mode. For the isotropic

component of the errors one may write for a variable f (which may be Y or x)
£ £ § f £ 1

£
= A .
cov<fik'fjl> Ek El L (Akn ln) Cn(k,l) Jo(kn rij/D) (4.2)

where Ei, Ei are the forecast errors at levels k,1l, and Ci(k,l) is the
vertical correlation matrix for mode n; k and 1 index the vertical levels, i
and j index the horizontal position. The horizontal covariance of the error
of the wind is determined for all levels, while the covariance of the error of
the vertical wind difference is determined for all pairs of levels.
Extrapolation to the origin then gives all the covariances required to define
the vertical covariance matrix of each horizontal mode. The average

correlation is therefore a weighted average of the correlations of the

separate modes.

£
If the vertical correlation matrices Cn(k,l) are independent of the modal

index, and are all equal to Cf(k,l), then the expansion may be written

N %

_ f _f f £ £
g Ty = B B C (kD) nZO(Akn Aln) I e, xy /D) (4.3)

cov<fi
If, in addition, the coefficients An (k,1) are the same for all levels and all
combinations of levels, then the expansion is fully separable as
£ N

£_f £
! fjl> = E,E; C (k,1) ngo AT (k rij/D) (4.4)

cov<fi
Current implementations of statistical interpolation analysis assume
formulations of the latter kind. The validity of the separability
assumptions can be tested by examining the variation of the normalised

spectrum with level, and the variation of the vertical correlation with

horizontal mode.
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The data do not immediately justify an assumption of homogeneity in the
vertical. This means that, in principle, a distinct horizontal function is
needed to represent the functional dependence of the spatial correlation for
each pair of levels. It turns out that homogeneity of the correlations in
the vertical is a reasonably good approximation, provided the levels are

sufficiently close to each other.

4.4 Length scales of the correlation functions
It is useful to define a horizontal length scale for the correlation
functions. For each term in the isotropic horizontal expansions (4.1)a,b

there is the relation
k_ 2

2 - _ (1
V23 _(k_r/D) = (D ) J_ (k_x/D)

For the spherical harmonic functions there is the analogous relation

2. % - m{m+1) _ £
v Ym aZ Ym

L . . .
where Ym is a spherical harmonic, m is the total spherical wave-number and a
is the radius of the earth. For each radial wavenumber kn, one may define an

equivalent spherical total wavenumber Kn such that
k 2 XK (K +1)
m . non
D a

This equivalent spherical wavenumber Kn will be used to label the wavenumber

axis on plots of spectra or normalised spectra.
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Table 1. Values of kn’Kn'D/kn’Lc'L for the isotropic modes.

k
n kn Kn D/kn(km) Lc(km) Lk(km)
0 0 0 L] o ©
1 3.8 8 789 1116 4957
2 7.0 15 429 607 2695
3 10.2 22 294 416 1847
4 13.3 28 226 312 1420
5 16.5 35 182 257 1143
6 19.6 42 153 216 961
7 22.8 49 132 187 829
8 25.9 55 116 164 729
9 29.0 62 103 146 647
10 32.2 68 93 131 584
Table 1 shows kn' Kn,D/kn, Lc= /2(D/kn), and Lk = ZWD/kn, for the isotropic

problem. The quantity D/kn provides a convenient definition of the scale of
each of the horizontal modes. To define the scale of a correlation function,
one proceeds in an analogous fashion, so that the scale Lf of a function F is

defined as

This is equivalent to the definition of the microscale in turbulence theor&-

If F is isotropic with expansion coefficients Fn then the scale of F is

defined by
ZFn
2 - n2
Le =D IxZ v
n n

and corresponds to a spectrally weighted average of the scales of the

constituent modes of F.
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If F is a stream function (or a velocity potential), then the length scale so
defined gives the ratio of the stream function (or velocity potential)
variance to the sum of the variances of the two velocity components,‘i.e. the
associated vector wind variance. The 'component' length scale Lcis the length
scale which defines the ratio of the stream function (or velocity potential)
amplitude to the corresponding rms velocity component. In several operational
systems a Gaussian is used for the auto-correlation functions in the form

(Bergman 1979, Lorenc 1981)

2
F(r) = exp [~ (1) ]
C

The rms velocity component Et associated with F is given by

L

E =
t L
c
Since the authors just cited work with the wind component error rather than
the vector wind error, there will be a factor of V2 difference between their

definition of the length scale and ours. One may think of Lc as an

approximate quarter wavelength for the exponential.

4.5 Discussion

The least-squares solution of the turbulence equations requires the
specification of a truncation parameter for the analysis system corresponding
to the diameter D of the data selection area. The choice of D/2 as a distance
beyond which all the wind-wind correlations are zero leads to a consistent set

of boundary conditions for the turbulence equations. The natural basis
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functions for the problem contain a function corresponding to a time-varying
wind error which is constant over the data selection area. It is likely that
the neglect of such a term in our pre-1985 operational analysis system
contributes to the problems in the analysis of the large-scale tropical wind
field noted by Cats and Wergen (1982). Given a complete set of basis
functions the solutions are readily found, once the truncation of the series

expansions has been decided.
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5. THE PREDICTION AND OBSERVATION ERRORS FOR WIND

5.1 The isotropic component of the total wind error

The series expansions of the solutions of equations (3.6) must be terminated
when a coefficient becomes negative, if the solution is to satisfy the
requirement of positive-definiteness. One therefore needs to consider the

desirability of using the full truncation that is computationally available.

Fig. 1 shows the empirical data on the radial distribution of the isotropic
part of the 500 mb <u,u>+<v,v> correlation, together with the least-squares
fitting curves derived using 6, 8, 10, 12 and 14 terms in the expansion for
the spatial correlation of the total wind. As the truncation wavenumber is
increased, the perceived error variance on the shorter scales is better
resolved and so is treated as horizontally correlated prediction error rather
than horizontally uncorrelated observational error, where the term observation
error includes both instrumental error and errors of representativeness. If
one were using low truncation structure functions in the analysis algorithm of
this assimilation system, then one would have to recognise that the
observation error, in this definition, must be horizontally correlated

(M.Pedder, pers.comm.).

Fig. 2 shows the 500 mb spectra for the total wind error, for truncations at
even nuﬁbers between 6 and 14. The calculations are remarkably stable. A
feature of the results is the increase in amplitude at all wavelengths, as
the truncation is increased. This would not happen if the basis functions
were orthogonal on the grid defined by the data points. A comparison of
Figs. 1 and 2 suggests that the correlation of the total wind error is
negligible for distances much larger than 1000 km, and that increases in the
truncation are quite stable, as far as we have gone, because of the sharpness

of the correlations near the origin.
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A truncation of 14 terms in the synoptic-scale part of the expansion was the
maximum truncation for which the least squares procedure produced physically
reasonable results. The highest retained term then corresponded in scale to
the shortest resolvable wavelength in the grid-point forecast model which was
used in the assimilation from which the statistics are derived. Since late
April 1983 the grid point model has been replaced by a spectral model with
horizontal resolution T63. In this model the shortest resolvable scale would
correspond to the retention of a maximum of 10 terms in the synoptic-scale
part of the expansion. For this reason we decided to restrict all our
results to a truncétion of 10 terms in the synoptic scale components. This

choice of truncation has other advantages:

® It was independent of the the presence or absence of the data from the

two closest station pairs.

® It fell comfortably within the error bars of the data for the next
twelve closest station pairs

° It appeared to mark an inflection point in the curves of increasing
forecast error and decreasing observational error, as the truncation

increased.

e The shortest resolved scale with a truncation of 10 terms has a
wavelength of 584 km (Table 1). This is about twice the spacing of

the closest station pairs.

5.2 Prediction error and observation error magnitudes

Fig. 3 shows the perceived rms forecast error for the vector wind together

with the calculations of rms prediction error and observation error. In the
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V500
. Amplitude

10.0*10
3.0%10°
1.0*10°
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- LEGEND
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|
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Fig. 2 The normalised spectra of the <f,8>+<t,t> correlation functions for

truncations of 6, 8, 10, 12, and 14 terms in the least squares procedure; the
truncation of each curve is indicated in the legend.
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Fig. 3. The vertical variation of the perceived wind forecast errors (Total),
together with the corresponding profiles of the prediction (Pred) and
observation (Obs) error.
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upper troposphere the prediction error for the vector wind is about 25%
larger than the observational error; in the stratosphere the two are of the
same order of magnitude; while in the lower troposphere the prediction error
is some 25% smaller than the observation error. This is a result which has
important implications for the ability of the assimilation system to monitor

the performance of individual components of the observing system.

A useful check that the partition of perceived forecast error into prediction
and observation error is reasonable is given by the estimate of the vertical
correlation matrix for observational error. Fig. 4 shows plots of the columns
of this matrix for a selection of levels. Since most of the North American
rawinsondes use a radio-theodolite wind-finding system, there should be little
vertical correlation of instrumental error between successive levels. This
expectation is supported by the resﬁlts of Fig. 4. Of the. 55 inter-level
correlations which were calculated, only one had a magnitude in excess of 0.4,
two had magnitudes between 0.3 and 0.4, and nine had magnitudes between 0.2
and 0.3. These results indicate low levels of inter-level correlation of wind
observational error, in accordance with expectation. Since the observational
error correlation was derived as a residual from a horizontal extrapolation of
horizontally correlated wind-shear errors, the good agreement with expectation

gives confidence in the results.

5.3 The longitudinal and transverse wind correlations

Pigs. 5 and 6 show the observational data for the longitudinal and transverse

correlations, <2,Q> and <t,t>, at 200 mb. As discussed by Batchelor (1953)
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Fig. 5 The variation,at 200mb, of the <%,&> or longitudinal correlation with
station separation: The squares show the empirically determined average value
for each 100km 'bin', together with the number of station pairs in that bin.
All the data out to 3000km was used in the least squares procedure to
determine the fitting curve (x) with a truncation of 10 synoptic scale
terms.
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Fig. 6 The variation at 200mb of the <t,t> or transverse correlation with
station separation: The squares show the empirically determined average value
for each 100km 'bin', together with the number of station pairs in that bin.
All the data out to 3000km was used in the least squares procedure to
determine the fitting curve (x) with a truncation of 10 synoptic scale terms.
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the longitudinal correlation will tend to be positive at all separations in
purely non-divergent flow, while the transverse correlation is expected to
change sign before approaching zero at large separations. The change of sign
is due to the return flow arising from the non-divergence, as indicated in the

schematic diagram in Fig. 7a.

On the other hand a purely divergent flow will tend to have a large
correlation length in the transverse correlation and a short correlation
length, with a change of sign, in the longitudinal direction. This is
because the longitudinal flow will tend to be away from a source and towards
a sink, as indicated in the schematic on Fig. 7b. The results on Figs. 5 and
6 are typical for most levels ip showing a much longer correlation length for
the longitudinal correlation than for the transverse correlation. This

suggests, as is the case, that the forecast errors are largely non-~divergent.

(a) The large scale component of the wind forecast errors

At a few levels the transverse correlation does not in fact change sign at any
separation. This does not imply that the divergent and non-divergent
components contribute equally to the forecast errors (Lorenc 1981, Daley

1983). In fact the constant, or large scale, component of the forecast errors’
is substantial, and cancels the change of sign in the transverse correlation

at those levels.
Fig. 8a shows the vertical profile of the prediction error for the total wind

partitioned between the synoptic-scale and large scale components, while Fig.

8b shows the vertical profile of the ratio of the large-scale component to
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Fig. 7 Idealised schematics of the flow in the vicinity of a wind observation
point X in the case where the flow is (a) purely rotational and (b) purely
divergent.
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a) TOTAL WIND ERROR b) Viarge/Vtotal
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Fig. 8a: The vertical profile of the rms prediction error for vector wind
(Total), together with the rms large~scale and rms synoptic-scale
contributions to the total. The sum of the variances of the two
contributions gives the variance of the total prediction error.

8b: the ratio of rms large-scale to rms total prediction error for vector
wind.
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Fig.A 9 The correlation with 500mb of the large scale component of the vector
wind prediction error.
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SYNOPTIC WIND
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Fig. 10 The vertical profile of the rms synoptic-scale prediction error for
vector wind (U-synop), together with the rms non-divergent (U-psi) and rms
divergent (U~-chi) contributions to the total. The sum of the variances of
the two contributions gives the variance of the synoptic-scale prediction
error. :
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Fig. 11. The vertical profile of the Rossby number of the wind forecast
errors, defined as the ratio of the rms divergent wind error to the rms
prediction error, which includes both large-scale and synoptic-scale terms.
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the total. At all levels except 300 and 250 mb this ratio is close to or
exceeds 0.4, which is a surprisingly large figure. The large scale component
at 400 mb is positively correlated with the corresponding components at all
other levels, while the large-scale component at and below 500 mb tends to be
negatively correlated with the same component above 250 mb. For example

Fig. 9 shows the vertical correlation of the large-scale component with the
500 mb level, where the change of sign between the lower and upper troposphere
is clearly apparent. These results suggest that the large-scale component of
the wind forecast errors has a vertical structure corresponding to an intermnal

mode.

(b) Synoptic scale prediction errors in the wind

Fig. 10 shows the vertical profile of the prediction error for the synoptic
scale vector wind, together with the corresponding profiles for the |
non-divergent and divergent winds. The total prediction error is dominated by
the errors in the non-divergent component. The amplitude of the forecast
error in the divergent wind shows some plausible features, such as the
relative maximum in the upper troposphere. The fact that it is nearly
constant in the stratosphere is also interesting, and might suggest a tidal
origin for the stratospheric part, since the forecast model does not have a

diurnal cycle.

u

Fig. 11 shows the Rossby number for the forecast errors defined as EL where

p

u is the rms vector wind prediction error. The Rossby number is fairly
p
constant with height with values varying between 0.3 and 0.45. These

relatively large values suggest that the forecast for the non-divergent
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component of the wind is relatively more accurate than the forecast for the
divergent component, leading to a larger Rossby number for the forecast errors
than for the total field. The implications of the large Rossby number will be

discussed in Part II when we discuss the mass-wind correlations.

5.4 Prediction and observation errors of the wind shear

Data on the thermal wind, or the verticql wind shear, has always been of great
importance in manual synoptic analysis. In a multivariate objective analysis
system, the weight assigned to wind shear data is determined implicitly by the
vertical covariance matrices of the prediction and observation errors. The
implications of the present calculations for the analysis of the wind shear
are presented in Fig. 12 which shows the calculations of the prediction error
and observation error for the rms vector wind shear between adjacent standard
levels. According to these calculations the prediction error is lower than
the observation error in the lower troposphere, 1.5 m/s/km compared with 2.5
m/s/km, while the two are of comparable magnitude in the upper troposphere and

stratosphere, with peak values of order 3.5 m/s/km for both.

These results give guite an optimistic view of the accuracy of the forecasts.
One would have expected the wind shear measurements to be more accurate in the
troposphere than in the stratosphere. Two possible reasons may contribute to
the large estimates of the observational error of the wind shear between
adjacent levels in the troposphere. The variability of the shear is much
greater in the troposphere than in the stratosphere. The WMO coding practice
over North America is to round the wind direction to 5 degrees. With 50 m/s
winds this leads to an rms rounding error of 2.2 m/s in the reported wind, and

so a rounding error of 3.1 m/s in the wind difference between levels. Since
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Fig. 12. Vertical profiles of the rms prediction error (Pred) and observation
error (Obs) for the vertical wind shear between adjacent standard levels, in

units of m/s/km.
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most of the standard levels in the troposphere are separated by a vertical
distance of 1 to 2 km, the estimated observational error of about 3 m/s/km is

not too unreasonable in the upper troposphere.

The second possible explanation for the relatively large estimates of the
observational error for the wind shear arises from the possibility of an
alias of anisotropic prediction error onto the observational error. At any
given analysis time it is likely that a large prediction error in the wind
shear at a given point will be associated with similar errors along a
particular (frontal5 direction. In the isotropic calculations reported here
such a configuration of prediction error could contribute to an overestimate
of the horizontally uncorrelated part of the perceived forecast error, which

is defined here to be the observational error.

5.5 Discussion

The partition of the perceived forecast errors.into horizontally correlated
prediction errors and horizontally uncorrélated observatién errors results in
estimates of the magnitude and vertical correlation of the observational
errors which agree with expectations. Consequently the estimates of the
magnitudes and vertical correlation structure of the prediction errors are

probably reasonable.

Several features of the prediction errors are noteworthy. The prediction
error for the wind is comparable with the observational error. The prediction
error for the wind shear between adjacent standard levels is comparable with

or lower than the corresponding observational error. Part of this result may
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be attributable to reporting practice and perhaps also to the aliasing of

anisotropic prediction error onto the observation error.

There is a substantial large-scale component in the wind prediction error,
which is not represented well by a Gaussian correlation model. - This
component may be of even more importance in the tropics than in
mid-latitudes. Over the area of study the large scale component shows an out

of phase relation between the layers below 400 mb and the layers above.
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6. THE ROTATIONAL WIND COMPONENT OF PREDICTION ERROR

6.1 The length scale and horizontal spectrum

Fig. 13 shows the vertical variation of the length scale of the <y,>
correlation for truncations of 6, 8 and 10 terms in the synoptic-scale
components. Each truncation shows a roughly constant value for the length
scale at and below 400 mb, with a marked increase with height between 400 and
150 mb. The length scale of the correlation is sensitive to the truncation in
the troposphere below 300 mb, with length scales varying by 30 to 50 km as the
truncation is varied. In terms of the component length scale Lc the scale
varies between 400 km and about 500 km; the assimilation system which produced
the statistics used a component length scale of 600 km. The length scale is
rather insensitive to increases in the truncation above 6 terms for the levels
above 200 mb. These results would justify a substantial increase in the

horizontal resolution of the analysis system in the troposphere.

Fig. 14 shows the normalised energy spectrum of the synoptic-scale
non-divergent wind errors as a function of height. At and above 200 mb the
high wavenumber ends of the spectra in Fig. 14 are very steep, indicating that
the largest scales (modes 1 and 2) are dominant in the stratosphere. At most
levels below 250 mb the spectrum peaks at total wavenumber 15 (mode 2). The
only exception is 500 mb where the spectrum peaks at total wavenumber 22 (mode
3). These results suggest that the tropospheric forecast errors in the wind
field over North America are dominated by errors in the forecasts of the

baroclinic waves, as might have been expected.

Balgovind et al. (1983) have investigated idealised spectra for height field

forecast errors. As recognised by these authors, their proposed form for the
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Fig. 13 Vertical profile of the horizontal length scale of the stream-function
auto-correlation for three truncations in the least squares procedure, namely
6, 8, and 10 terms in the synoptic-scale components.
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stream function auto-correlation leads to a non-removable singularity at the
origin in the wind-wind correlations. Their assumption about the spectrum of

the non-divergent winds is not supported by the present results.

The change in the character of the spectra between the stratosphere and the
troposphere is much more marked for the rotational wind field than it is for
the height field. However within each region the wind spectra are fairly
consistent from level to level, suggesting that separability may be a
reasonably good approximation for the synoptic-scale non-divergent components

of the forecast errors within each region.

The variations in the slopes of the spectra within the troposphere are of
considerable interest. In the upper troposphere they seem to follow a power
law that could be k=3 or k‘”, while in the lower troposphere they are much
flatter. A k=2 spectrum is a discontinuity spectrum and there may therefore
be a suggestion that thé wind forecast errors are mainly associated with
frontal structures in the lower troposphere, although Andrews and Hoskins
(1978) suggest that frontal structures may have a x~8/3 spectrum. We hope to

pursue this question more thoroughly in later studies.

6.2 Vertical correlations

In discussing the question of separability of the rotational wind errors it
is useful to consider the vertical correlations of the forecast errors. We
examine the variation of the vertical correlations with horizontal mode, and
compare the single mode correlations with the average correlations for the

rotational wind field, and for the total wind field.
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Fig. 15a shows the vertical correlations of the first five terms of the
non~divergent wind correlation with the 250 mb level. With the single
exception of the correlation of mode 5 with the 50 mb level there is excellent
qualitative agreement among the results, showing a short correlation length
with the stratospheric layers, and a much broader correlation length in the
troposphere. There is even good qualitative agreeement on the negative
correlation with 850 mb. The results from other levels together with those
shown in Fig. 15 suggest that separability of the non-divergent wind

correlation is a good working assumption.

Fig. 15b shows the coresponding average correlations for the non-divergent
wind and the total wind. The correlation length for the total wind is
slightly shorter than for the non-divergent wind in the troposphere because of
the form of the vertical correlation for the divergent wind, to be discussed

shortly.

6.3 Parameterised vertical correlation

Fig. 16 shows the average vertical correlation of the non-divergent wind for a
selected set of levels. There is a broad similarity in the shape of the
curves, with a clear pattern of negative correlation between the upper and
lower troposphere. The correlation between adjacent levels is of great

interest for the very practical purpose of analysing strong baroclinic zones.

In order to summarise and simplify the discussion of the vertical correlation

results, Fig. 17 shows a plot of the logarithm of the average vertical

correlation against the difference of the logarithms of the pressure;
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in effect this makes the abscissa approximately equivalent to geometric
distance. The plot is made for all tropospheric levels (850 to 250 mb), and
excludes negative values and all data where there is a marked increase after a
steady decrease. This only happened for large vertical separations. Since
practical algorithms usually try to avoid selecting data separated by more
than a scale-height, these are not serious restrictions. A comparison of this
plot with the equivalent result for the height field (Part II) shows that
there is a very distinct difference in behaviour between the height
correlations and the rotational wind correlations, with the latter being
significantly sharéer. This difference in vertical correlation is enhanced if
the effect of the large-scale height forecast error is included. An important
implication of this result is that one cannot expect the average height-stream
function correlation to be extremely close to 1, since such a result would

require close similarity between the vertical correlations.

For the purposes of practical analysis it is convenient to represent the

correlations with a (pressure) homogeneous representation of the form

b

c = exp [ (l22z2ly 7y

a

1
For theoretical reasons it would be desirable to fit the data with a value of
b¢>2. .This we found impossible without overestimating the correlations at

short range, which would seriously underestimate the (reliably determined)

thermal wind forecast errors over thin layers. For this reason a weighting
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which respected the data for short separations was used. It was found that
b¢= 1.6 gave the best fit. A similar result was found for the height field.
The value of a, was found to be 0.5; the correlation therefore decreases to

v

-l for a separation of half a scale height. This curve is shown in Fig.17

e

and it gives a reasonable representation of the data.

6.4 Discussion

The horizontal length scale of the streamfunction correlation is markedly
larger in the stratosphere than in the troposphere. The length scales are
sensitive to resolﬁtion, and the results would justify an increase in the
horizontal resolution of the analysis. The wvertical correlation structure is
nearly independent of horizontal mode for the (dominant) first five modes.
This suggests that separability is a good working assumption for the
streamfunction errors. Although the vertical correlations are not homogeneous
in the troposphere, they can be represénted reasonably well by a homogeneous

function provided the vertical separation is not too large.
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7. THE DIVERGENT WIND COMPONENT OF PREDICTION ERROR

7.1 Horizontal spectrum

Fig. 18 shows the normalised spectrum of the divergent‘wind forecast error as
a function of height. At all levels except 300 mb the spectrum is dominated
by the gravest horizontal mode. The fact that the tails of the spectra are
noisy in the troposphere does not mask the dominance of the large scale

modes .

7.2 Vertical correlation of divergent wind errors

The forecast errors in the divergent wind seem to occur for different reasons
in the stratosphere and the troposphere. Fig. 19 shows the vertical
correlation for the gravest horizontal mode for a selection of levels. This
mode dominates the kinetic energy of the divergent wind. Fig. 19 shows that
there are strong negative correlations of the wind errors witﬁin the
troposphere, which would be consistent with the view that this.c0mponent of
the error is associated with baroclinic processes in the tropésphere. Similar
structures are found in the vertical correlations of mode 2. ‘Thé correlations
between the stratospheric and tropospheric levels are low and apparently
noisy, while correlations within the stratosphere are always positive. We
interpret these results as suggesting that the stratospheric component of the
divergent wind error is of different, and possibly tidal, origin. This
interpretation will be discussed when considering the height~wind correlations

in Part II.
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Fig. 18. Spectra, as Figure 14, of the divergent component of the
wind forecast errors.
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7.3 The stream function-velocity potential correlation

Fig. 20 shows a plot of the <Y,X> correlation for the first mode, as a
function of height. The magnitude of the correlation is less than 0.097 at
all levels except 700 and 70 mb, where it has values of ~.219 and .109

respectively.

At almost all levels the spectrum of H is dominated by the first mode. The
only exceptions of any significance are the 300 and 250 mb levels where modes
1 and 2 are comparable. A similar feature was noted already in the spectrum

of the <¥,X> correlation.

Given such very low correlations it would probably be sensible to suppose that
the figure merely shows noise in the calculation of a quantity whose true
value is zero. if this were indeed the case then onebmight conclude that the
conditions for Obukhov's theorem, on the independence of rotational and
irrotational flow velocities in isotropic flow, were indeed satisfied by the
forecast errors. On the other hand one could argue that the structure shown
in the figure is too smooth to be merely noise, particularly below 200 mb. We
see a clear distinction between the upper and lower troposphere in the sign of
the correlation. Whichever viewpoint is true, the matter is only of academic
interest. As pointed out by Daley (1983}, thé correlation is of little

consequence for practical analysis unless it is reasonably close to 1.
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8. SUMMARY AND CONCLUSIONS

The methods developed in this paper provide a comprehensive three-dimensional
and spectral description of the covariance structure of the wind forecast and
wind observation errors, subject only to the assumption of local homogeneity
of the errors. The requirements of positive-definiteness on the spectra of
the correlation functions guarantees the positive-definiteness of any Optimum
Interpolation analysis matrix generated from the functional representations.

This is essential in both theoretical and practical work.

The mathematical formulation which is used to estimate the <V,¥>, <X,X> and
<Y,x> covariances from the empirically determined <u,u>, <v,v>, and <u,v>
covariances is sufficiently general to determine both the isotropic and
anisotropic components of the prediction error. The present study deals only

with the isotropic components.

The wind forecast errors are dominated by the synoptic scale stream function
component, although there is also a large-scale component whose vertical
structure appears to be intermal; the divergent component of the wind errors
is about the same magnitude as the large-scale component in the troposphere

and rather smaller in the stratosphere.

The forecast errors in the wind field are comparable in magnitude witﬁ the
observation errors. The errors in the forecasts of the vertical wind shear
also appear to be comparable with the observational errors. The term
observational error in our discussion includes sampling errors as well as

instrumental error.

There are good grounds for increasing the resolution of our analysis system,

both in the horizontal and vertical.
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The synoptic scale wind field forecast errors have been resolved into
rotational and divergent components. The Rossby number of the wind forecast
errors (defined as the ratio of the divergent to the total wind amplitude) is
between 0.3 and 0.45 at all levels. The errors in the divergent wind field
are of large horizontal scale. The stratospheric component of these errors
possibly arises from the absence of a diurnal tide in the forecast model. The
tropospheric divergent wind errors have a vertical correlation structure which

is consistent with a purely tropospheric origin for the errors.

The largest wind forecast errors occur in the rotational component of the
flow. The horizontal and vertical scales of the <¢:W$ correlation would
justify a marked increase in the resolution of the analysis system. This
would probably have a significant impact on the thermal wind analysis.’ The

<X,¥> correlation is quite weak.

The methods and results presented above can be extended in a variety of
directions. Current studies are concerned with the forecast errors in the
tropics, and anisotropic aspects of the forecast errors. The indications
that the accuracy of the forecast is frequently comparable with that of the
observations offers considerable potential for monitoring the performance of
both the observational system and the analysis system (Hollingsworth et al.
1985a). Finally, the methods can be adapted to provide spectral estimates of

analysis accuracy.
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