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1 Introduction

During the last several years, the adjoint of a data asdimiilaystem has emerged as an accurate and efficient
tool for estimating observation impacts on short-rangethedorecasts (Langland and Baker 2004, Gelaro et
al. 2007, Cardinali 2009). With this tool, the impacts of anwll observations can be computed simultaneously
based on a single execution of the adjoint system. In adylitiee results can be easily aggregated by data type,
location, channel, etc., making this technique especétiactive for regular, even near-real time, monitoring
of the entire observing system. Currently the adjoint appiois used at several forecast centers either for
experimentation or routine monitoring of observation ictgeon short-range forecasts. Also, a coordinated
experiment is being conducted to compare adjoint-bas@uatsts of observation impacts produced in different
forecast systems.

In this paper we review recent developments in the use of djmrd technique for estimating observation
impact and interpretation of the results obtained. Redubis the aforementioned comparison project are
shown for the forecast systems used at the Naval Researdrdtaty (NRL) and NASA Global Modeling
and Assimilation Office (GMAQ). In addition, we review key dings from ongoing research with the adjoint
method, including the need for and implications of gre#tt@n-first-order estimates of impact, extension of the
method to nonlinear analysis problems, and the comparifadjoint-based estimates of observation impact
with those derived from traditional observing system eipents (OSES).

2 Estimation of observation impact

A technique for using the adjoint of a data assimilationeysto measure observation impact was proposed by
Langland and Baker (2004, hereafter LB04). It efficientlyireates the impact of individual observations on
an energy-based measure of forecast error

e=x"—x)TPTCP(x' —x), 1)

wherex' is a forecast stated is a verification state (considered ‘truth@, is a diagonal matrix of weights that
gives (L) units of energy per unit mass (J/kdp,is a spatial projection operator that measwresly within a
specified region of interest and the superscript T denotesdimspose operation. The measure of observation
impact is taken to be the difference érbetween forecasts initialized from an analysisand corresponding
background state&;,, where this difference is due entirely to the assimilatiérihe observations. It can be
expressed in the form

de=(K'g,d), )
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whereK T is the adjoint of the analysis schentgis a vector in model space (described below) that includes
sensitivity information produced by the adjoint of the fomst model and is the vector of observation-minus-
background departures (innovations) used to produce tigsas

Xa = Xp+ Kd. 3)

In general, computation of the innovations requires anmBsien operatorH, that relates the model state to
the observationsy, such thatl =y — H(x). In (2) and @), it is assumed that is either linear or a function of
only X, although this is not necessarily true in general. Thisssulsed further in section 2.2.

The expression?) represents a weighted sum of the innovations for all atsied observations. The impact
of a particular subset of observations may be quantified loynsimg only those terms in2f involving the
corresponding elements dof The computation oK g is done only once, however, based on the complete
set of observations. Thus, the impact of a given subset aregasons is determined with respect to all other
observationsimultaneously This contrasts with traditional OSEs that estimate thedast impact for subsets
of observations that are withheld from (or added to) the yaimlin a series of separate experiments. The
computational cost of producing the observation impactrimftion using the adjoint system is about the same
as re-runnning the (forward) analysis and forecast mottehgh this can be reduced depending on the method
used to comput& T (Tréemolet 2008).

2.1 Ordersof approximation of de

As derived by LBO4g has the form
g=M{PTCP(x{ —x') + MIPTCP(x{ —x!), )

wherexg andx. are forecasts initialized from, andx,, andM| andM] represent the adjoint of the forecast
model evaluated along those trajectories. Errico (200&0ed 2) in the context of various-order Taylor series
approximation ofde in terms ofd, whose order depends on the formgfThe expression ind), is that of a
non-linear (essentially third-order) approximationdat

Owing to the quadratic nature of)( an approximation beyond first order is indeed requiredit@io a suf-
ficiently accurate estimate dfe (Gelaro et al. 2007). Fig. 1 compares the first-, second- hind-order
approximations obe with the “actual” differencee(x;) - e(xg), computed in physical space from a series of
24-hour forecasts and verifying analyses at 00 UTC for eaghddiring July 2005. The results were produced
using forward and adjoint versions of the NASA GEOS-5 atrhesic data assimilation system, including all
conventional observations and satellite radiances assadioperationally at the time. Note first thae is
negative for all days, indicating that the assimilationta tomplete set of observations consistently results in
a more accurate 24-hour forecast. The first-order apprdiomalearly overestimates the beneficial impact of
the observations, by roughly a factor of two. This is an elgebcesult provided, is close to the minimum

of e (Trémolet 2007). The second- and third-order approxiomstiare much more accurate; they lie within
approximately 15% of the actual values overall. The fact tha higher-order approximations still slightly
underestimate the beneficial impact of the observationsastlynlikely due to deficiencies associated with
the adjoint forecast model, including the absence of mdigsigal processes present in the nonlinear forecast
model.

Whereas 4) is a function of bothx, andx,, its first-order counterpart is a function § only (not shown).
Consequently, the former generally depends on all the eleodd throughx,, as implied by 8). As pointed
out by Errico (2007), the necessity of using greater-thest-firder approximations a¥e to obtain accurate
estimates of observation impact means that partial sunts tosguantify the impact of a particular subset of
observations may be somewhat ambiguous since such sunhgilovoss-products with innovations outside the
set in question. Gelaro et al. (2007) found this effect to fy@asently small when measuring the impacts of
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Figure 1: Time series of forecast error reductiade, due to assimilation of observations in GEOS-5 dur-
ing July 2005 computed from the model fields directly (thaid¥, and estimated using the adjoint-based
first-order approximationde; (dash), second-order approximatia¥g, (thin solid) and third-order approx-
imation, de; (dotted) (Gelaro et al. 2007).

large subsets of observations on global-scale measuredtdias not been shown that this effect is negligible
in general.

2.2 Nonlinear analysis problems

In variational data assimilation systems such as those afsetbst operational forecast centers, the analysis
cost function is nonlinear and difficult to minimize. Typlilgaa Gauss-Newton procedure is used to minimize
an approximate quadratic cost function defined by lineagi#i around the current state estimate, where the
analysis increment is the control variable of the problerhe Process is repeated until a satisfactory solution
is found, and these repeated minimizations define the $edcaliter loops of an incremental variational data
assimilation scheme (Courtier et al. 1994). In such a schémeeanalysis increment is ngf — x, = Kd as
given by @), but rather, after loop,

Xj—Xb:Kjdj%—KjHj(Xj,l—Xb), (5)

whered; =y —H(x;_1) andH is the observation operator linearized around the (preyistate estimate;_;.

Trmolet (2008) examined the computation of observationaichpn an incremental data assimilation system

with multiple outer loops. He showed that, while the secordkr adjoint of the assimilation system is required

to account fully for the impact of the outer loops (which ig pactical in a realistic system), a partial treatment

of their effects is possible with certain approximationshe3e include neglecting second-order terms that
contain information about the sensitivity of the operatiorg5) with respect to the state estimate, which may

be important, especially in four-dimensional variatio(WD-Var) assimilation. Nonetheless, by applyir (
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Figure 2: Daily average impact of various observing system&4-h forecasts from 00+06UTC in GEOS-5
(left) and NOGAPS (right) during January 2007. Negativeuealindicate forecast error reduction.

recursively, the total increment can be written as a linesnlmnation of the observation departures from the
various intermediate state estimates, and the impact efredions (on the measuepcan be estimated by the
scalar product

m
Z (KTLTg.dj), (6)

wherelL j = KyHm...Kj11Hj1, Lm =1 andmis the total number of outer loops.

In the following section we present observation impactltegar a system withm= 2 outer loops which, based
on (6), is computed as

| = (KIH7K3g,d1) + (K3g,d2) . (7)

Note that the departures in the last (second) outer loop airghted only by the corresponding operators for
this loop. This term is similar in form to that ir2) for the linear analysis problem, or equivalently an analys
produced using a single outer loop. In contrast, the degtin the preceding (first) outer loop are weighted
by the operators corresponding to that loop, as well as timseccessive outer loops.

3 Resultsfrom arecent inter-comparison project

An experiment is being conducted to directly compare olaemw impacts in different forecast systems using
the adjoint method. Here, we present results for a basetihefsobservations used by two global forecast
systems for the month of January 2007. The systems are NAVBASAPS (NRL-Monterey) and GEOS-5
(NASA). It is anticipated that the final set of results wilkalinclude contributions from the ECMWF and
Canadian global models.

The baseline set of observations is defined as those olisertgbes used in common by all forecast systems
of the participating institutions during January 2007 ntiludes AMSU-A radiances in addition to conventional
observations and satellite atmospheric motion vectors {&Mbut does not include more recent observation
types such as AIRS and IASI. The latter will be included irufetcomparisons. For some observation types
there are differences in the number and exact criteria far thata are selected for each forecast system. For
example, NOGAPS uses a larger number of AMVs, while GEOSeS asarger number of AMSU-A radiances.

The measure is defined as the dry total energy of the 24-h forecast errwden the surface and about 150
hPa over the global domain. The adjoint versions of the Bsemodels in this experiment are run in dry mode
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Figure 3: Impact of NOAA-18 AMSU-A channel 7 brightness tafores on 24-h forecasts from
00+06UTC in GEOS-5 (top) and NOGAPS (bottom) during Jan2@§7. The units are J/kg. Negative
values indicate forecast error reduction.

with no moist physics. The NOGAPS adjoint is run at T239L3€btetion (identical to the forecast model),
and the GEOS-5 forecast model adjoint is run at 1.0-degs®utgon (half that of the forecast model).

Both NAVDAS and the GEOS-5 data assimilation system adjan¢ 3D-Var schemes with roughly 0.5-degree
resolution. NAVDAS is an observation-space, linear analgdgorithm, so that observation impact is computed
as in ). GEOS-5 uses a model-space, incremental variationaysiealgorithm with two outer loops based
on the Gridpoint Statistical Interpolation scheme (GSI, 8/al. 2002). Observation impact in GEOS-5 is thus
computed as in?).

In the baseline experiment, we have calculated adjointthabservation impact at every analysis time (00, 06,
12, 18UTC) for the month of January 2007, which provides 14§ ef results. We show here three figures to
illustrate results. Fig. 2 displays the daily average olat@n impact (00+06UTC) in GEOS-5 and NOGAPS
for nine categories of observations. In both GEOS-5 and NBSAhe largest total impact for this baseline
set of observations is provided by AMSU-A radiances. Largpadcts in both systems are also provided by
AMVs, radiosondes, and commercial aircraft. It can be ndibed the impact of these four observation types
(radiances, AMVs, radiosondes, and commercial aircrdgt) provide the largest observation impacts in the
operational NOGAPS-NAVDAS, which is monitored on a routbesis in both 3d-VAR and 4d-VAR versions.
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Figure 4: Scatter diagram of observation impact versus iratmn (departure) for NOAA-18 AMSU-A
channel 7 brightness temperatures for the 24-h forecasalied OOUTC 21 January 2007 in GEOS-5
(left) and NOGAPS (right).

The dominance of these four observation types is therefesryarobust result, confirming that they were the
backbone of the global atmospheric observing network dutiis time. The impact of AMVs is substantially
larger in NOGAPS, which assimilates considerably more if thhservation type. The remaining observation
types—ship and land surface, MODIS, and QuikScat—prowvidaer impacts individually, but their combined
impact is significant. There is a small error reduction froBIV8B wind speeds in NOGAPS and a moderate
error increase from this observation type in GEOS-5.

Fig. 3 illustrates the capability of the adjoint method t@ntify the impact of specific instrument observation
subsets, in this case for NOAA-18 AMSU-A radiance channelhich provides large forecast error reduction
in both GEOS-5 and NOGAPS. Similar maps can be made for aagteel instrument or satellite channel. Note
in Fig. 3 the large error reductions provided over the saathemisphere, and the northern hemisphere oceans.
Interestingly, non-beneficial impact from these radiaraesurs over parts of India and central Canada in both
GEOS-5 and NOGAPS. This could be caused by land or ice-®idantamination of the processed radiance
observations, and indicates the utility of this method damitifying possible problems with observation quality
or data assimilation procedures.

Fig. 4 shows how the adjoint method allows observation imfmbe diagnosed in the context of other funda-
mental aspects of the assimilation scheme such as thebdigin of the innovations (or departures). Here we
show scatter diagrams of the impacts of channel 7 brighteesgeratures from NOAA-18 AMSU-A as a func-
tion of the departures for the forecast initiated at 0OOUTQarJanuary. Two aspects are revealed that appear
to be fundamental to both (and most likely all) forecastexyst. The first is that the numbers of observations
providing beneficial (negative ordinate values) and namefieial (positive ordinate values) impact are both
large. In fact, it turns out that only a small majority of thetati number of observations of all types—roughly
50-54% on average—are beneficial, although this small ntyajorovides the overall benefit provided by the
assimilation as revealed for example in Fig. 2. The secopdasevealed by close inspection of Fig. 4 is that
most of the total forecast error reduction comes from olagems with moderate-size innovations providing
moderate-size reductions, and not from outliers with varge positive or negative innovations. Both aspects
may help inform future strategies for data selection anérdispects of optimizing the use of observations.
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Figure 5: Adjoint- and OSE-based fractional impacts of wais observing systems on the change in 24-h
forecast error over the globe (upper left), NH (upper rigl8H (lower left) and tropics (lower right) during
January 2006 (Gelaro and Zhu 2009).

4 Comparison of adjoint-based observation impact with OSEs

The impact of observations oi)(can also be assessed using OSEs, by computing differemedsetween

a control forecast including all observation types assitad routinely and forecasts in which selected obser-
vations have been removed from the data assimilation systéafaro and Zhu (2009) conduced a detailed
comparison of adjoint-based observation impacts witheluigained from OSEs using a version of the GEOS-
5 forecast system. Examples of their results are reproduerss

To compare the methods, these authors defined for each appsromeasure of the fractional impact of an
observing systenj to the total error reduction obtained from the complete bstovations assimilated. For the
adjoint method, the fractional impact is defined as

Fi(ADJ) = dej/de, (8)

wheredeg is the partial sum obe corresponding to observing systgmFor the OSEs, the fractional impact is
defined as

Fi(OSE = (&)« —€c)/€ct 9)
whereeg;. is the error measure of the 24-h forecast from the analyzgewithoutobserving systen andeg,
is the error measure of the 24-h forecast control forecatidimg all observations.

Fig. 5 compares the values Bf(ADJ) andF;(OSE) for January 2006 for eight observing systems tested in
the OSEs. The observing systems are identified along thésabsahe suffixes 1, 2 and 3 for AMSU-A
denote impacts of one, two and three AMSU-A instruments. r@we globe and extratropics, we see fairly
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Figure 6: Adjoint-based fractional impacts of various ohdeg systems on the change in 24-h forecast error
during July 2005 for different OSEs. Results include oniytibutions from observations in the tropics to
the reduction in global forecast error (Gelaro and Zhu 2009)

good quantitative agreement between the two measures fetr ohserving systems, with the exception of
the satellite winds globally. In the NH there is good agreeider all observing systems. In the SH we see
somewhat larger impacts for AMSU-A in the adjoint resulsyeell as the larger impact of satellite winds in
the OSE results seen globally.

In the tropics, there is greater disagreement overall batwaajoint and OSE results. Values Bf{OSE)

are much larger than those Bf(ADJ) for all observing systems, with the former exceeding 50%storeral
observing systems. In the adjoint results, it is impossibléave such large fractional contributions from
several observing systems simultaneously since the swtiofnal impact for all observing systems must equal
one. There is no such constraint on the fractional impactiserOSESs, which are based on a series of separate
experiments. Nonetheless, the relative magnitudes ofahieus observing system contributions are consistent
in the two sets of results. This can be seen more clearly byaliring the results in the tropics for each method
(not shown).

The combineduse of OSEs and adjoints provides insights into how (chamebe mix of observations in a
data assimilation system affects their impacts. This cambasured by applying the adjoint method to the
perturbed OSE members and comparing the impacts of the mergadbserving systems with those in the
control experiment. Fig. 6 compares the fractional impacthe control experiment with those in thme
amsua3 no raob and no satwindexperiments during July 2005. In this case, we show coritdbs from
observations in the tropics to the reduction of the globadremorm. There are large variations in the impacts
of several observing systems. Removal of the satellite svindreases the impact of rawinsondes by more
than two thirds compared with the control, from 28% to 47%erEhis a reciprocal response in the impact of
satellite winds to the removal of rawinsondes, which moaattioubles with respect to the control experiment,
increasing from 15% to more than 30%.

The response of AIRS is more complex. The removal of AMSU-diaaces nearly doubles the fractional
impact of AIRS from 19% to 37% with respect to the control. hagp contrast to this, however, the removal of
the satellite winds results in AIRS having an overall deémtal impact on the forecast. This results suggests
that, in the absence (or substantial reduction) of direseplations of the wind, the wind increments induced
by AIRS through the balance relationship alone are detriaiext these latitudes.
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5 Conclusions

Adjoint-based estimates of observation impact have bedoaneasingly popular as an alternative or comple-
ment to traditional observing system experiments (OSE&g ddjoint technique is currently used at several
forecast centers for experimentation or routine monitprifi the observing system. Interest in the adjoint
method has motivated an inter-comparison project betwepters to directly compare observation impacts in
different operational forecast systems. Initial resultsiparing observation impacts in the US Navy NOGAPS
and NASA GEOS-5 forecast systems were presented. Resulés seveal overall consistency between the
impacts of most major observing systems in the NASA and Nagyems, despite basic differences in the
respective analysis algorithms, radiative transfer meédatl observation counts for some observation types.

For linear analysis problems, observation impact is closghted to (is an extension of) observation sensitiv-
ity. For nonlinear analysis problems, such as those solggtywan incremental variational data assimilation
scheme, computation of observation impact is more contglicaA simplified treatment of the outer loop
contributions is possible, however, providing usefulrasties of observation impact for these systems.

Comparisons so far between observation impacts derived @8Es and the adjoint method reveal overall con-
sistent estimates of the “importance” of most of the majaesbing systems, despite fundamental differences
in their underlying assumptions and methodologies. In&irom gleaned from OSEs and adjoints should be
viewed as complementary since both address relevant questbout how observations influence the quality
of weather forecasts. It is important to keep in mind thatatmint measures the impact of observations in
each analysis cycle separately and against the controgbaakd containing all previous information, while
the OSEs measure the impact of removing observationalnrd#ton from both the background and analy-
sis in a cumulative manner. This distinction can be significaspecially if an observing system contributes
disproportionately to the quality of the analysis and sgbsat background state.

The combineduse of OSEs and adjoints provides insights into how (chamjebe mix of observations in a
data assimilation system affects their impacts. Inforamaéibout these dependencies may be useful for making
intelligent data selection decisions and possibly idgimtif needs for future observation types.
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