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Summary: We study here the effect of various quasi-lagrangian techniques
applied to the primitive equations. The impact of the time integration
schemes is examined by calculating phase velocities of the propagating waves
which are solutions of the linear equations. A shallow water model is used
to study the behaviour of the slow moving wave while a baroclinic
two-dimensional model gives knowledge of the gravity wave propagation
properties as well as induced modifications to stationary flows forced by

orography.

1. INTRODUCTION

A few years ago, severals attempts were made to build stable time
integration schemes for numericalvprediction models permitting a large
time-step. A. J. Robert (1981) proposed to use the quasi—lagrangian
technique for the treatment of the advective part of the equations which
allows an increase of time-step without damaging model performances. Several

variants of this method have been proposed (Bates, 1985; Ritchie, 1986).
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We examine here the precision as well as the stability of the various
proposed methods by comparing the results given by the numerical schemes
with the analytical ones in the framework of linearised versions of the
primitive equation models. In this presentation, care is taken to
distinguish the effects of the time discretisation from those of the space
discretisation and space interpolation. The shallow water models permit to
study the behaviour of the slow moving waves while the two-dimensional
baroclinic models are used to study how the speed of the gravity waves is
modified and the consequenses of various discretisations on stationary flows

forced by orography.

2, THE VARIOUS QUASI-LAGRANGIAN SCHEMES

Only schemes using centered time-differences have been examined. We suppose
that we are able to determine with some accuracy the point where a particle

is coming from.

The general form of the evolution equation for a given parameter X(x,y,t)

can be written:

E 8x% aX
——§+U———+V—=L.X+N(X)
ot dx dy
I represents the linear part of the equations and N the residual non-linear

part. The left hand side of the above equation is the expression of the

lagrangian total derivative:

X oX 8X  dX
T iyt vt 22
ot 3x 3y dt

2.1 Method with interpolation (Robert, 1982)

The evolution equation is discretised as follows:

t+bt _ yt-Ot¢ t+dDt t-O¢
Xs X, XG + X

AT = L. > + [N(X“ )] ’

Xc is the value of X at grid point G (see Fig.la),
Xp is the value of X at the point O where the particle comes from,

X1 is the value of X at the mid-point I between O and G.
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Superscripts t, t- At, t+ At, refer to time levels.
This methods needs the interpolation of Xt~ 8t at point 0 and N(Xt) at point
I, (Figure 1la).

2.2 Method avoiding one interpolation (Ritchie, 1986)

We define the point 0' as the closest grid point to O and I' the mid-point

between 0' and G (Figure 1b). We can write:

U =0+ V=V +V
where 2 AtU* and 2 AtV* are the components of the vector 575.
The method consists in a lagrangian treatment of the advection by the wind
(u*, v*), the remaining advection by the residual (U', V') being
incorporated into the non linear part which appears in the right hand side.

This discretisation reads:

XpOr - g O XgrOr + X5 Ot 3% ,9%\*
2At 2 dx 9y) ,
I

= L. + [N(xt)] - (U'-— +V
o

This method avoids the interpolation at point O and the residual
interpolation at the point I’is very simple due to the three possible

locations (Figure lc).

L] a A b
9////, Robert's 7y Ritchie's

method ‘ method

/ c
3 1

L 2 The three possible

locations for I'

Figure 1. Location of the points where the interpolation is performed for

quasi-lagrangian techniques.
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2.3 Method without any interpolation (Geleyn, 1986)

One supplementary simplification can be achieved by evaluating the remaining
non linear terms by taking the average at time t between their values at

grid points G and 0':

mae] - (w32« v -5 { o]+ nae]

I
D Q) ) SN ) ¢
dx oy Ix oy

G (o]

},.

1

3. LINEARISED SHALLOW WATER MODELS

In order to study the accuracy and the stability of various time-integration
schemes, we compute the solutions of the corresponding models, which can

then be compared with the analytical solution.

3.1 Equations

We assume a geostrophic mean flow characterised by U, V and E(X,y) and a
topography @gx,y) parallel to the free surface E(X,y). We make the f-plane
approximation and call ), the mean value of the geopotential thickness
(@—@s). With these assumptions the linearised equations for the

perturbations U, V and @ have the following form:

W, g, vl _fv+2.0
ot 8x 3y : ox
- - 3V 3o
v + U ov +V—+ £fU+_—=20
ot ax Iy dy
a - 0 - 0¢ 3u ov
— — + V— + ¢ —_— + — =0 .
ot v ox 3y °[ dx 3y ]
3.2 . Analytical solutions

Assuming periodic boundary conditions we want to determine wave propagating
solutions of the form:

7 X = X*ei(kx_+ly+0)t)’
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k and 1 being the wave numbers along x and y axis and (» the frequency. The

solutions can be obtained by solving the homogeneous system:

’ N , 3

1(w +kU+1V) -f ik U
+f i(w+kT+1V) il x ' = 0 .
id, ide i(w +kU+1V) ) J
\ L \

Non-trivial solutions are obtained when the determinant of the matrix is
zero. Calling p the quantity + kU +1V , the condition leads to the third

degree equation:
ngz_[f2+@o(k2+12)]$ =0 -

We have three solutions for p and thus for W :
OF] = -(kU+1V): the slow solution,
Wy 3 = -(k0+1V) * [ £2 + @O(k2+12)]1/2: these are the two fast moving

inertia-gravity solutions.

3.3 Effect of the space discretisation

The effect of replacing space derivatives by finite differences on a grid
modifies the preceding results. Making the traditional discretisation on a

"Arakawa-C" grid leads to the introduction of wave depending damping

factors:
sin(kAx) sin(1lAx) . .
S = —— and T = — in front of the advective terms,
2 kAx 2 1Ax
sin(kAax/2) sin(1lAx/2) .
g = — = and g = — e in front of the adaptative terms,
3 kAx /2 3 1Ax/2

and Q3 = S3T3 in front of the Coriolis terms.

The third degree equation becomes:

B - DB+ o(shidat3]} = o
with: p = O+ Syk0 + 8317,
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which finally gives for

‘(Szkﬁ + Tle)
~(89kT + To1W)* [ Q52 + o (sik2+Td12) ]1/2,

w1

w2,3

The effect of the spatial discretisation on the grid is a decrease of the
effective phase velocity of the waves. The larger the wave numbers k and 1
the more important this effect. This is a well known result and in order to
simplify further we shall suppose hereafter that spatial derivatives are

exactly evaluated, (by means of the spectral method for example).

3.4 Centered explicit model

The time derivative of X is evaluated by time centered differences:

dX _ Xt+fr - xt-fr
at 24t

Assuming the same form as before for X, this discretisation leads to
replace iw by iSjw with:
sin(wAt)
517 Taae

The solutions read in this case:

-(kU+1V) At
§-(0+19) & [£246,(k2+12)]1/2¢ Ae

sin(w At)

sin{wAt)

This scheme will be stable if the frequencies @ are real (i.e. the right

hand sides must be between -1 and +1).
This leads to the criterion:
3(kﬁ+1\7) T2 + §o(k2+12)] 1‘/222 At2 g1 .
We obtain in total six solutions because there are two solutions for the

arcsin function. Retaining only the three solutions corresponding to the

physical modes gives:

L o )
w, = ZE arcsin [—(kU+lV)At}-
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W, ;= %E arcsinﬂ{—(kﬁ+l§) F [f2+ ¢°(k2+12)]1/2} Atﬂ

3.5. Centered semi-implicit scheme

The time derivative 1is calculated as before while the adaptation terms are

averaged between time levels t — At and t + At:
)_{Zt = }_ (Xt#At + Xt-At) N
2

This procedure introduces a factor C; = cos( e At) in front of the

adaptation terms and gives:

1 ] - -
W, = ZE ar051n{—(kU+1V)At]-

W2 3 are obtained by solving a second degree equation for sin(ew At):
[sin(mAt»)+(k6+1€r)At]2 - {f2+ ¢, [1-sin2(mAt)] [k?2 +12]} At? -
The slow solution is identical to the explicit one and gives the stability

criterion:

(kU + 1V)2 At2 < 1. .

3.6 Quasi-lagrangian semi-implicit scheme (Robert, 1981)

By assuming that the interpolation at the point O where the particle comes
from is exactly evaluated, the discretisation of the total derivative dX/dt

by (xt+ Bt _ xt-O8t)y/2 Ar gives:

t+De _ yt-AOt M
X X, S,

= i — X
20t At Tt

(the subscript I refers here to the mid-point wvalue) with
! ., - -
S1 = sin[(w+kU+1V) At].

Similarly adaptative terms are computed by taking the average:

+ D -A
R R
X = > = C, X,

with C]’_ = COS[(“) +kU+1V) At] *
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Solving the corresponding characteristic equation gives for the physical

solutions:
o, = -(kb+17) ,
- - £2+ ¢, (k2+ 12)]*/?
w, , = -(kU+lV) + — arctg (At ’
1 - At?f?

with the stability criterion: £2 AtZ < 1.

We can also take into account the effect of the interpolation. In the case
of the linear interpolation and for the restricted one-dimensional case
(1 = 0) we get a complex value W, + iw; for the solutions. This indicates

that the amplitude is no longer conserved. We obtain for the slow solution:

1 kpAx . 1 vt § sin(kAx)
ry T At 9 1 8[1-cos(kAx)]

@ 2 2

where p is the grid point verifying:
(p+1)Ax £ 2U Ot ¢pAx

and & the normalised distance p - 2U At/ x.

The amplification factor p is given by:

p4] = 1 - 286(1-8)[1 - cos(k )],

This expression means that {P|4 <1 (stable scheme) provided 0 < 3 <1 . The
interpolation must be done by using the grid point values around the origin

point (Bates, 1985).

3.7 Scheme avoiding the interpolation (Ritchie, 1985)

Following Ritchie's method the lagrangian derivative is calculated between
points O' and G, where O' is the closest point to O where the particle comes
from. The components of the distance 0'G are p Ax, qAx and in this case we

obtain for the slow solution:

- —

0, =
1 At

1 (kpAx 1gAx 1
+ - i ' '

[ > > ] At arcsin [(kU'+1V')At] »
Wy, 3 are obtained from the solutions of the second degree equation for the

quantity:

) A
S;' = sin[mAt + kp—-—zx +1q§§] H
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[S; + (kU'+1v)At]? = [ £+ @, (1 - 5]2) (k+ 12)] a2 -

The stability criterion is now given by:
(k' + 1v')2 Ae2 (1,
which is analogous to that we obtained with the semi-implicit scheme,

replacing (U, V) by the residual velocity (U', V').

3.8 The scheme without any interpolation (Geleyn, 1986)

If the residual advective and Coriolis terms are evaluated at time t by
averaging their values at the departure point and at the arriving point, we
obtain a solution analogous to the preceding one, where the terms
(kU'+1v') . At and f are multiplied by the attenuation factor
C = cos(lp Dx/2 +1q Ox/2).

3.9 Behaviour of the slow moving wave

I1f we are interested in the behaviour of the slow moving wave, we can
evaluate the efficiency of the scheme by calculating the ratio
T = Wpumerical/@Wanalytical for several values of the number K = 2UAL/ Ax
(restricting now our comparison to the one-dimensional case).

The results are displayed in figures 2a, 2b, 2¢ for various values of the
wavelength AN . In this comparison only the effect of the time discretisation
has been taken into account. For the classical quasi-lagrangian method we

just assumed a linear interpolation at the origin point.

We remark that the quasi-lagrangian scheme (dashed line) gives a high
precision if sufficiently large values of the wavelength and K are

considered.

The method proposed by Ritchie (dash-dotted 1line), which coincides with the
conventional semi-implicit one for K 0.5 looks like the Robert method for
large values of the number K . The method proposed by Geleyn in order to
avoid any interpolation is not as precise as the preceding ones for small

wavelengths but becomes acceptable for wavelengths larger than 16 Ax.
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Figure 2. Effect of the time integration on the slow wave for various values

of the wavelength.
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4, NUMERICAL EXPERIMENTATION WITH THE NON LINEAR MODEL

4.1 Limited area experimental framework.

Several tests have been carried out with the non linear barotropic model
using the grid of the PERIDOT model: "Arakawa-C", 51x51 points, 38.1 km
(Imbard et al., 1986). Initial values as well as boundary values were
calculated from 500 hPa analyses every 6 hours on a larger domain (63X63
points) in order to be able to achieve the interpolation at the origin
point. We used a reduced geopotential variable § = (d5090npa—40000) in order
to have a reasonable mean divergence. The treatment of the boundary
conditions was identical to that of the PERIDOT model. The weighting
coefficients were calculated depending on the time step to keep the same
value of the relaxation factor for a given grid point. The time-step was
4 min. for the semi-implicit integration and 20 min. for the
quasi-lagrangian experiments. For the application of the quasi-lagrangian

techniques the following interpolations were carried out:
- interpolation of the wind to determine the trajectories: bilinear,

~ interpolation at points O and I: bicubic,

- interpolation at point I' (Ritchie's method): linear or bilinear.

4.2 Experimental results

The initial state (Figure 3) is characterised by a northerly flow over
France associated with a low which is located in the northern part of Italy.
After 48 hours a low coming from the north is located just over Paris while

the italian low tends to disappear (Figure 4).

The examination of the forecasts given by the various methods leads to the
following conclusions: all the methods give analogous results (Figures 5 to
8). The methods avoiding interpolation place the centre of the low over the
Channel while the right position is rather the Seine basin (Figures 7 and
8). We also remark that the method without interpolation produces some noise
particularly over the Mediteranean Sea. This effect can be due to threshold
effects associated with the search for the closest grid point to the
origin. It must also be mentioned that Geleyn's method (without any

interpolation, figure 8) gives the same result as Ritchie's one.
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Figure 5. 48 h. forecast, Semi-implicit scheme

Reduced geopotential (J/kg)
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Figure 6. As fig. 5 except for Robert's scheme

31



0 A

2

. ‘/ii:;////// 29
3334
2
0_/ \\aqs(
b \\\
s 388" \;13>G\
Oﬁ‘ /_/ / n;5° 40 1 \0
% 5807 a6” TR 080 99a,

Figure 7. As fig. 5 except for Ritchie's scheme

. 1298

Figure 8. As fig. 5 except for Geleyn's scheme

32



5. THE TWO-DIMENSIONAL LINEARISED BAROCLINIC MODEL
5.1 Equations

We study a two-dimensional baroclinic flow and linearise the primitive

equations. As a vertical coordinate we use the hybrid vertical coordinate s.
We assume a basic state characterised by pg (fixed surface pressure), T
(isothermal temperature profile) and U (constant horizontal wind velocity).
The linearised set of equations for the perturbations U, T, pg can now be

written as:

U _ 59U 3T 9p,
at ox ox ox
9T 5 oT A au
at ox ox
9p, - 9p, 3U

= —U - | p— .
Jt )4 ox

U and T are N element column vectors corresponding to the values of the
perturbations for the N levels of the model.

B is a NxN matrix which characterises the discretisation of the linear part
of the hydrostatic equation.

A is a NxN matrix which corresponds to the discretised expression of the
energy conversion term.

G is a column vector corresponding to the discretisation of the term
(RT/Cpp)dp/dps-

S8' is a row vector whose elements are the layer thicknesses for the

reference value Pg of the surface pressure.

5.2 Analytical solutions

Assuming periodic boundary conditions, solutions of the form X = x*eik(x-ct)
can be determined

These are the solutions of the 2N+l order homogeneous system:

e ~ yi T
U-c B G v*
A U-c 0 v* = 0 .
s' 0 U-c o=
N ' . g
Setting U - ¢ = —p we obtain:

33



AU* = pT*
] 03 ols
SU™ = pupg .

(1) If p = 0 we get:

(M - p21)U* = 0 with M = BA+GS'.
The p? are the eigenvalues of the vertical stucture matrix M and we get 2N
solutions given by:

ci =T % pj, i=l,...,N

corresponding to the eigenvectors:

Uy eigenvector of the matrix M

TF = A U/pi
ps, = S'U"/pi
(ii) if p = 0 then ¢ = U
This is the slow solution with the associated eigenvector:
U* =0
T = B~lgpg

pi arbitrarily chosen.

The 2N+1 solutions are the normal modes of the linearised system.

5.3 Effect of the space discretisation

If we use a "Arakawa.C" grid, we have to introduce the Sy and S3 factors in
front of the advective and adaptative terms respectively, as before in the

barotropic case, after which the velocities become:

cy = Szﬁ A S3pis i=l,...,N.

The eigenvectors are not modified.

5.4 Centered explicit model

The evaluation of the time derivatives by use of centered differences leads

to replace 3X/dt by S13X/dt which gives the relation:
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Sicg = SoU ¥ S3p and then:

E

1 -
c. = AT arcsin[kAt (SZU + S, u) ] .

5.5 Semi~implicit model

The time averaging introduces a supplementary factor C; = cos(wdt) in fromt

of the adaptative terms and we have the relation:

Sjcgy = S2 ¥ C1S3p

which gives after solving a second degree equation for sin(w At):

s,U T u33[1+k2At2(u28§ -0’ sz )]1’2

1
c = —— arcsin kAt .
s1I kAt 1 + SZp?k?At?
5.6 The quasi-lagrangian semi-implicit model

Keeping the same notations as before for the "origin" and "mid-point'", the
discretisation of the model reads:
sin[ (m+kﬁ) At]

= 1 t - g' .ikXt -
AL i RAT . kX; S', 1kXI

xt+At - Xt-At
o

The adaptation terms are averaged so that:

xe+de _ xe-Or¢
o

5 = cos[(w+kﬁ)At] X: = c'l.x; p)

which leads to the formula:
! 1
5; =% CiS3p

and the velocity becomes:

- 1
C,, = U ¢F-A—_E arctg(kAts, )

The above calculations have been made by assuming that the values of x at

points O and I are exactly interpolated. In the practical cases these values
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have to be interpolated. We introduce the complex number Yk as response
of the interpolator for a periodic function of wave number k, so that

Xinterpolated = Y k-Xexact: The preceding results are modified as a

consequense of the complex value of the wave velocity.

We obtain:
(CQL)r = U.-'ZkAt’Arg (r,) ¥ RAL arctg(kAts, p)
- (CQL)i = - 2kAt LOg(’Yk) .

The imaginary part of the velocity implies that the solution is damped, the

damping factor being [ [’yk|l/2.

These general formulae allow us to determine the propagating properties for

various interpolations.

Linear interpolation gives:

§sin(kAx) pAx

1
- (c rctg + ¥ arctg(kAts, 1)

1
=——a
o) 2kAt 1-8 [1-cos(kAx)] 2At kAt

~ = {1-26(1-6) [1 - cos(kAx)]1}/* -

where p is so that: pAx > 204t » (p+l) Ax
and & = p-2T At/ Ax.

In the case of the cubic interpolation we find:

- i

2 kA

L A 1+§sin2—§fs(1—8)
X

—arctg]tg > (1-28) Iarctg(kAtSau)€

2 KA
1+251n2—§§6(1—6)

- —

C =
(Cou ). kAt

' L kA KA kA 2 kA 1/4
-{cos? 2| 142810 255 (1-6 ) | wsin? 2o 1426102 X0% (1.5)]? (1225 )2 W4
P 2 2 2

3

5.7 Comparison between the various schemes

By comparing the results of the computed gravity wave velocities with the
analytical ones, it appears that the time integration scheme modifies the
propagating properties of these waves. In order to see more clearly the
effect of the numerical schemes, we computed the values of R = ¢/U s, the

ratio of the numerical gravity wave velocity and the mean flow velocity
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(similar to an inverse Froude number) and studied its variations with
respect to the Courant number kUAt for various values of the parameter
T = P/ﬁ'

The results are plotted on figures 9a, 9b and 9c, corresponding to the
values 7= 5, T=1 and 7 = .2. Calculations have been made assuming an

exact evaluation of the interpolated values at the origin point.
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Figure 9. Effect of the time integration schemes on the gravity waves for

various values of the ratio 7= p/U.
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The figure 9a, which corresponds to the external gravity wave case, shows
that the quasi-lagrangian scheme (dotted line) strongly modifies the speed
of the gravity waves. The absolute value of the retrograde wave decreases
and becomes zero when the Courant number reaches approximately 1.4. For this
value there is a wave number which gives a stationary solution. When the
Courant number is greater than this value the wave propagates in the wrong
direction. Figure 9b corresponds to the critical case when one of the
gravity waves is actually stationary. Here again the quasi-lagrangian scheme
gives a prograde wave. The figure 9c shows that for internal waves the

effect of the scheme is not as detrimental as for the other cases.

6. STATIONARY SOLUTIONS WITH OROGRAPHIC FORCING FOR THE LINEAR MODEL

6.1 Modified momentum equation

We now want to determine the response of the linear model to orographic
forcing. We introduce for the uppermost layers of the model a dissipation
term (horizontal diffusion term) in order to avoid the false reflection of
the waves due to the unrealistic boundary condition at the top of the

atmosphere (Klemp and Lilly, 1978). The momentum equation for instance

reads:
83U -~ U oT op, 9%, oy
at oX ox ox ox ox?
orographic

term

where @s is the surface geopotential (depending only on the variable x) and

V is the viscous dissipation coefficient.

6.2 Analytical stationary solution

Fourier transformation of the modified equations gives the time evolution

equations for the Fourier coefficients relative to the wave number k.

da -~ -~ ”~ o~ -~
o = -ikU O, -ikB T, -ike B,, -ik &, -Kk'» U,
aT .

= - -ikU T_ -ikA O,
at
d/‘

ek _ikD p . -iks'G. -

dt sk k
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The stationary solution is obtained by setting the time derivatives equal to

zero. Then the elimination of ﬁgkand fk in the above system leads to the

relation:
A ikv| =2 | 1= &~
U= | M- [1- Ul ue
- s k
U
6.3 Stationary solution for the explicit or semi-implicit schemes

The discretisation on a "Arakawa.C" grid introduces the above mentioned
factors Sy and S3 in the equations. The discretisation -of the time
derivatives as well as the averaging of the linear part of the equations has

no influence on the result and the stationary solution becomes:

= : 2 .
U= | MS2 - |1 -ik——| 82 U | §,5,U &
S, U
6.4 Effect of the quasi-lagrangian semi-implicit scheme

In this case the total derivative is calculated using:

t+Dt _ ywt-O¢
X ). 93

dt 24t

and the time averaging:

Xt+At + xt+At
(o]

iz:_
B 2
Applying this discretisation we finally obtain for the Fourier
coefficients:
-~ -1
2 , o1kUAL 2
~ 2 2 ] Sjve A g ~
U, = | Ms?2 ©° - [1 -ik— s, o,
_51— K2 At? kAt s k
kAt
with: &P = sin(kUAt) and: € = cos(kU At).

This relation shows that the stationary solution is modified by the time

integration scheme. The greater the time step, the greater the modification.
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7. NUMERICAL EXPERIMENTS WITH THE LINEAR BAROCLINIC MODEL

7.1 Characteristics of the linear model

We used a 47 point "Arakawa.-C" grid with a 10 km mesh and cyclic boundary
conditions (so that Xj = X, and X9 = X47 . The vertical discretisation was
carried out by defining 30 o levels equally spaced with respect to height
(Az = 600 m) in order to ensure an accurate representation of the vertical

wave structures (Bougeault, 1987).

The orography was a "bell shaped" mountain defined by h(x)=hg(1+x2/bZ) with
ho= 500 m and b= 25 km. The basic state was defined by the values T = 273°K,
Ps = 1013.25 hPa and U = 20 ms™l. The initial situation was calculated by
adding to this basic state zero perturbations for T and U and

Ps = ﬁs(e'gh(X)/RT - 1) for the surface pressure.

The model is then integrated up to 24 hours with various time-steps
depending on the time integration scheme. The results of the integration of
the linear model can be compared with the analytical solution (Figure 10),

which was calculated by Bougeault (1987) after Klemp and Lilly (1978).

7.2 Explicit model

The explicit model has been integrated using a 10 s time-step up to 24 hours
(Figure 11). The differences between the final state and the analytical
solution are due to the unrealistic upper boundary condition o= 0 at o= 0,
which leads to a false reflection of the waves at the top of the
atmosphere. As shown by Klemp and Lilly (1978), this drawback can be
overturned by introducing a viscous dissipation layer (horizontal
diffusion). The viscosity coefficient progressively grows from V= 0 at
level 0= 0.3 to ¥ = 1.5 x10° at level o = 0.15 and aloft. The diffusive
term is implicitly treated at the end of the time-step, in order to have an
unconditionally stable scheme . The inclusion of this term in the momentum
equation as well as in the thermodynamic equation allows to obtain a final

state (Figure 11) which looks like the true solution we were looking for.
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7.3 Semi-implicit model

The integrations are henceforth carried out with the upper dissipation
terms. The semi-implicit model is characterized by an implicit treatment of
the linear adaptative terms: they are calculated by using the same values as
the basic state omes: (T = 273°K, Pg = 1013.25 hPa). Figure 13 shows the
results, which have been obtained by using a 300 s time-step, and which are
almost identical to the explicit ones. When evaluating the implicit part of
the linear terms with different reference values (T = 290°K, pg = 950 hPa)
we have to explicitly compute the remaining linear terms but the final

solution does not greatly differ from the preceding ones (Figure 14).

7.4 Quasi-lagrangian semi—implicit model

The quasi-lagrangian semi-implicit model using the Robert's method with
linear intepolation at the origin point is at once integrated with a 300 s
time-step. Two experiments have been carried out by using the same reference
profiles as before. By looking at the results (Figures 15 and 16) we remark
that they are slightly different from the semi-implicit ones (Figures 13 and
14). We observe a tilt of the line along the extrema of the vertical
velocity.

By using a 900s time-step we obtain a final state (Figure 17) which is now
dramatically different from the analytical one as it could be anticipated

from calculations in Section 6.4.

7.5 Comparison with the computed stationary solution.

We calculated the stationary solution taking into account the effects of
space as well as time discretisation. The relations we established in
sections 6.3 and 6.4 for the Fourier components were transformed back into
the physical space. Results given by explicit or semi-implicit method are
plotted in figure 18 and exhibit a strong similarity with the results of
the numerical integrations. Figures 19 and 20 show the reconstruction of the
stationary quasi-lagrangian state by using time-steps of 300 s and 900 s
respectively. The similarity between these figures (especially vertical
velocities) and the results of the numerical integratiomns after 24 hours
indicates that the odd behaviour of the model for large Courant numbers is

due to the use of the quasi-lagrangian scheme.
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Common characteristics to figures 11 to 20:

At =900 s

Zonal winds (on the left) are in ms~! and vertical velocities (on the right)

in cms~1.

Contour interval are 4 ms~1 and 1 dms_l,

respectively.

The

vertical extension of the domain is limited to 10 000 m in these figures.



8. CONCLUSION
The effect of the quasi-lagrangian schemes has been investigated for two

simplified two-dimensional models.

Calculations carried out with linear shallow water models show that the slow
mode is rather well treated if the wavelength of the perturbation is large
enough. These theoretical results are corroborated by numerical integrations
using the non linear version of the model, which give good results even with

Geleyn's method.

The study of the linear baroclinic equations show that the gravity wave
velocities are strongly modified by the quasi-lagrangian scheme. In addition
to that, it has been shown that this numerical scheme induces a wrong
stationary solution; these results are also confirmed by numerical
integrations of the linear model. Further investigations and tests of
several variants of the method (horizontal as well as vertical
quasi-lagrangian advection scheme, for example) have to be carried out in

order to clarify our conclusions.

It would be premature to conclude that the quasi-lagrangian scheme could not
be used for numerical weather prediction purposes. Several three-dimensional
models using this kind of time integration have been succesfully implemented
and the results have proven to be as good as the ones given by more
classical models. It must also be pointed out that the baroclinic
experiments presented correspond to an academic case where gravity waves
dominate as is not the case for a large part of actual atmospheric flows.
Nevertheless there is a suspicion that such schemes may not simulate well
mesoscale circulations like flows forced by orography or events where the

gravity waves play an important part.

References

Bates J.R., 1985. Semi-lagrangian advective schemes and their use in
meteorological modelling. Lectures in Applied Mathematics Vol.22 , pp. 1-29.

Bougeault Ph., 1987. Etude de quelques écoulements orographiques & 1'aide du
modéle PERIDOT. Note de travail EERM N° 191, 85p.. Direction de la
Météorologie Nationale, 77 Rue de S&vres ,92106 Boulogne-Billancourt Cédex,

France.

45




Geleyn J.F., 1986. Personal communication.

Imbard M., Joly A., Juvanon du Vachat R., 1986. Le modele de prévision
numérique PERIDOT. Formulation dynamique et modes de fonctionnement. Note de
travail EERM n° 161, 70p. Direction de la Météorologie Nationmale, 77 Rue de
Savres, 92106 Boulogne-Bilancourt, Cédex, France.

Klemp J.B. and Lilly J.K, 1978. Numerical simulation of hydrostatic mountain
waves. J. Atm. Sci. Vol. 35 pp. 78-107.

Ritchie H., 1986. Eliminating the interpolation associated with
semi-lagrangian scheme. Mon. Wea. Rev. Vol 1l4. pp. 135-146.

Robert A.J., 1981. A stable numerical integration scheme for the primitive
meteorological equations. Atmosph2re-Océan Vol.19. pp. 35-46.

Robert A.J., 1982. A semi-lagrangian and semi-implicit numerical integration

scheme for primitive meteorological equations. J. Met. Soc. Japan, Vol. 60.
pp. 319-32

46





