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Summary:

In this report we summarize our current work evaluating shape preserving interpolation
for use with semi-Lagrangian advection of scalar fields. We have compared the accuracy
of a large number of shape-preserving interpolation schemes. The large number results
from considering permuta,tions of interpolating forms, derivative estimates and deriva-
tive constraints that have been introduced in the recent shape preserving interpolation
literature. We compare: ’

e Five types of piecewise interpolating functions, all of an osculatory form involv-
ing data values and derivative estimates at the end points of the interpolation
intervals.

o Seven methods of estimating derivatives, all of a local nature involving a limited
number of data values surrounding the estimation point.

e Several derivative constraints appropriate to insure shape preservation within
the interpolation interval. These constraints vary with interpolation form and

include conditions for monotonicity and/or convexity/concavity.

We summarize the results of this intercomparison, then test the most promising inter-
polation forms with Cartesian one- and two-dimensional semi-Lagrangian advection of
several test shapes. We extend the two-dimensional schemes to spherical geometry and
illustrate that no serious problems arise there. Finally, we compare four methods of
cdmputing the departure point in spherical geometry. We evalute these with several

hypothetical wind fields for which we can calculate the departure point exactly.

* Currently on collaborative leave with UCAR Visiting Scientist Research Program at National
Meteorological Center, Washington, D.C.
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1. INTRODUCTION

The spectral transform method has proven to be very good for calculating nonlinear,
adiabatic fluid flow on the surface of a sphere. As a result, it has been adopted as the
basis of many operational global numerical weather prediction and atmospheric general
circulation models. The spectral approach, however, has serious deficiencies in physically
representing the advection of fields which have large horizontal gradients. Water vapor,

usually expressed as mixing ratio or specific humidity, is such a field. The problem is

most noticeable as regions of negative mixing ratic which are inconsistent with physical
parameterizations. Various computational fixes have been included in most models
to eliminate these negative regions but they can result in significant compuiaticnal
transport. Less noticeable, but equally serious, are regions of overshoot. Unlike negative
mixing ratios, it is not obvious from the field itself when overshooting has occurred and
thus it cannot be corrected or even monitored before the physical parameterizations are
invoked. However, the overshoot can erroneously interact with the parameterizations

and produce, for example, spurious precipitation.

The over/undershoot can be atiributed to three problems with spectral transport:
namely, Gibbs phenomena, spectral truncation, and dispersion errors. The familiar
Gibbs phenomena is introduced by the need to represent fields with discontinuities or
near discontinuities by smooth global basis functions. Additionally, in the spectral
transform approach the number of degrees of freedom in the spectral representation is
less than in the gridpoint representation. Gridpoint fields reconstituted from the spec-
tral representation are truncated and contain additional areas of over and undershoot.
These areas of over/undershoot are especially noticeable in the flelds where large gra-
dients are induced by the forcing. They are not eliminated by finer resolution since the
source and sink terms tend to remain discontinuous. Finally, even if the field could be
represented exactly by the basis set, dispersion errors due to numerical inaccuracies can
introduce over/undershooting. This type of over/undershooting is also present in finite
difference solutions to the transport equation unless special attention is given to the

numerical method.

We are investigating an alternative scalar transport approach to couple with global spec-
tral transform nonlinear dynamical models. Our approach consists of semi-Lagrangian
transport with shape preserving interpolation. Semi-Lagrangian transport is chosen be-
cause it has no stability condition restriction on the time step and thus does not suffer
from the usual pole problem associated with explicit gridpoint schemes nor from phage

errors associated with implicit gridpoint schemes. Shape preserving denotes a class of
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interpolation methods that maintain certain properties suggested by the data. Such
properties include monotonicity and convexity, and provide a means of avoiding the
oscillations often seen in polynomial interpolation. These methods reduce or eliminate

the overshooting possible with the semi-Lagrangian transport method.

We summarize our current work in this report. More details are included in papers being
prepared for journal publication. In Section 2 we describe various shape preserving
interpolators and summarize an evaluation of their relative performance when applied
to several test functions. In Section 3 we show selected examples from applying the
interpolators to one-dimensional semi-Lagrangian transport and summarize our more
complete study. We consider uniform translation of specified test shapes. In Section 4
we summarize results from the application of the schemes that performed best in the
first tests to two-dimensional semi-Lagrangian advection on a plane. The test case is
uniform rotation of specified test shapes. We extend the two-dimensional advection on
a plane to advection on the surface of the sphere in Section 5 and show that no serious
problems are introduced by that geometry. The test case is solid body rotation of test
shapes about an axis rotated with respect to the polar axis of the coordinate system.
Finally, in Section 6 we compare several methods for calculating the departure point in

spherical geometry.

2. THE INTERPOLATION PROBLEM
We begin by defining the grid {z;}",,z; < z3 < ... < z,, and the data values

{f:}, fi = f(z:). It is also convenient to define the discrete slopes

A= (fi+1 ~ fi)[(zig1 — ) (2.1)
The data are locally monotonic at z; if

A 1A;>0, . (2.2)
and locally convex if

Do > A ' (2.3)

For concave data, the inequality in (2.3) is reversed. We define a piecewise interpolant
p € CK|[z,,1,], with K > 0. On each subinterval [z;,z;11], let

0= (.’1: — :Bi)/hi hi=xi41 — (2.4)
and '

p(x) = pil6) . (2.5)
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The interpolant p is constrained to have the following interpolatory properties
p(:l:i) = fi, dp(xi)/d:c =d;. (2.6)

Here, d; is some estimate of the derivative of f at the endpoints of the interval. The
interpolant is specified on the subinterval in terms of the data f;, and the derivative

estimates d; at the endpoints of the subinterval, that is

pi(8) = pil8, fi, fir1,dis dita) (2.7)

The interpolant thus adheres to the standard osculatory representation, although the
functional form of p; is not necessarily the usual Hermite cubic polynomial form. In order
to reduce the number of schemes involved in the intercomparison, only interpolating
forms which involve use of local information have been included, i.e., d; is a function of
a few surrounding values of f;. In this fashion we have excluded from consideration many
global schemes; for example, the classic C? cubic splines which minimize the integral
of the curvature of the interpolant over the entire domain, exponential splines under
tension (Spath, 1969), and global versions of the monotone, piecewise interpolants of
Fritsch and Carlson (1980) and Delbourgo and Gregory (1983). These schemes require
information from the entire domain to interpolate within any one subinterval. Following
this restriction, schemes which differ from each other in the following three major ways
are considered:
e The method of estimating the derivative is varied according to algorithms that
have been suggested in the shape preserving literature.
o The type of interpolating function is varied o encompass cubic polynomials,
rational functions, and quadratic Bernstein polynomials with extra knots.

To guarantee monotonicity or concavity /convexity in the interpolating function,

®

certain constraints are imposed on the derivative estimates. The appropriate

constraint depends upon the interpolation form.

It is convenient to address these items in reverse order in the following subsections.

2.1 Constraints on the derivatives

Certain consiraints must be imposed on the derivative estimates used in the interpo-
lation schemes in order for the interpolants to maintain any convexity/concavity or
monotonicity present in the data. The constraints are reviewed in this section, pro-
ceeding from the least to the most restrictive form. The constraints can be written in
terms of restrictions on the derivative estimates d at the endpoints of an interval, as

a function of the discrete slope A within the interval. Because of this, the constraint
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on d; based on A;_; of the interval to the left may be different from that based on A;
of the interval to the right. One may choose to constrain the derivative differently for
interpolation over the two intervals in which case the interpolant is C°, or insist that
constraints associated with both intervals be satisfied simultaneously, in which case the
interpolant is C'. When the constraint on d; depends not only on the discrete slopes over
the adjacent intervals A;_1,A;, but also the slope estimate d;_1, or d;41 at the other
end of the interval, the C! interpolants become global. Such forms are not considered

in this report.

The requirement that the derivative estimates bound the discrete slope for a C° inter-

polant

(di — A){A; ~dipq) >0 (NCCo) (2.8)
and lie between the adjacent discrete slopes for a C! interpolant

(di — A)(Aipr1 —di) >0 (NCC1) (2.9)

must be true for the interpolant to remain convex/concave. These requirements are

identified as Necessary Conditions(s) for Convexity/Concavity, C° and C!, respectively.

In order that the interpolating function be monotonic and C° the derivatives must satisfy
the Necessary Condition for Monotonicity, (NCMO)

sign(d;) = sign(A;) =sign(di11) Ai#0

(NCMO) (2.10)
di = diy1 =0 A;=0

that is, the derivative estimate at the end points must have the same sign as the discrete

slope on the interval. For a C! interpolant

sign(A;_1) = sign(d;) =sign(A;) A;—1A; >0
(NCM1) (2.11)
d; =0 N 1A <0,

The derivative estimate at a data point must have the same sign as the discrete slopes
surrounding it or be zero if the data are not monotonic at this point. This condition is
the Necessary Condition for Monotonicity, C' (NCM1).

For the rational and piecewise quadratic interpolation forms to be discussed below, the
necessary conditions, NCM0O and NCM1, are also sufficient conditions for monotonic-

ity. Similarly, the NCCO and NCC1 are sufficient conditions for convexity with these
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interpolants. On the other hand, for Hermite cubic interpolants NCMO and NCM1
are necessary but not sufficient for monotonicity and must be augmented by additional

constraints on the derivatives.

Fritsch and Carlson (1980) have found both necessary and sufficient conditions for mono-
tonicity of Hermite cubic interpolants. Let o = d;/A;, § = diy1/A;; then for A; #0
the Hermite cubic interpolant will be monotonic if and only if (e, 8) lies within the

domain M,, defined by the union of two domains

Muns = M. UM, . (2.12)
where '

Me(e, B) = {a, B : ¢(ar, 8) < 0} (2.13)

Mp(e,8) = {e,:0< a<3,0< 3 <3}

and

B(enB) = (@~ 1) +(a=1)(F— 1)+ (8- 1) —3(a+f—2). (2.14)

If A; =0,d; = dit1 =0 and the necessary condition discussed earlier is also sufficient.
Embedded in this domain M,, is the region M; recognized independently by de Boor
and Swartz (1977) which provides a sufficient condition for monotonicity of the Hermite

cubic. This sufficient condition
0<a<3,0<B<3 (sCM) (2.15)

is easier to apply than the more general necessary and sufficient condition (M) in which
a and § may be. dependent on each other. Throughout the remainder of this report
this simpler condition will be referred to as the Sufficient Condition for Monotonicity
(SCM). As before, we define C° and C! forms depending on whether the derivatives d
are bounded by just A of the interval being interpolated or by the A of the two adjacent

intervals simultaneously.

At an extremum where the data are not monotonic, SCM1 limiting provides a severe
restriction as d; is then zero there. Hyman (1983) has relaxed the SCM1 limiting
concept where the data reach a local extremum, and are not monotonic. He proposed

the following limit on the derivatives.
min[max(0,d;),3(0, Amin)] 0 < Amin
d; = § max[min(0,d;),3(0, Amax)] 0> Amax (2.16)

0 otherwise

where
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Amin = min(A;, A;_y) Amax = max(A;, A;_q) .

This allows for overshoot at local discrete extrema and thus is nonmonotonic but does
provide some control of the overshoot and, in particular, prevents oscillations at the

edges of flat plateaus.

2.2 Interpolation forms

Three types of interpolating functions are considered—all have appeared in the recent

literature regarding shape preserving interpolation.

e Cubic polynomials (de Boor and Swartz, 1977; Fritsch and Carlson, 1980; Hy-
man, 1983; Fritsch and Butland, 1981)

e Rational functions (Gregory and Delbourgo, 1982; Delbourgo and Gregory,
1983, 1985)

e Quadratic Bernstein polynomials with extra knots (McAllister et al., 1977;
McAllister and Roulier, 1978, 1981).

The Hermite cubic and rational interpolating funtions can be described using the for-

malism of Delbourgo and Gregory (1985). Consider the function

p; = Pi(0)/Q:(0) (2.17)
on the interval 0 < # < 1, equivalently z; < z < z;;, where

Pi(0) = fi410° +(rifis1 — hidiy1) 6%(1 — 0)

and —{—(T,’fi - hidi) 0(1 — 3)2 + fi(l — 0)3 (2.18)

Qi(6) = 1+ (r; — 3)8(1— ) (2.19)

We consider four choices of the parameter r;

e If r, = 3, p; reduces to the standard Hermite cubic polynomal interpolation
form. Recall that the interpolant will be monotonic if the d; lie within the
‘domain M.

o Ifr; = 1+(d;+d;11)/A;, then P; and Q; reduce to quadratic polynomials, and p;
is identified as a rational quadratic interpolant. Delbourgo and Gregory (1985)
have shown that provided d; and d;4+1 satisfy the NCM, p will be monotonic

over the subinterval, otherwise this interpolant is not well defined.
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e If r;, = 1+ max(C;/c;,C;/ciy1) where ¢; = A; — dy, ¢i41 = digy1 — A4, C; =
diy1 — d;, then P; and @Q; are cubic polynomials and p; is identified as the

rational cubic interpolant version 1.

o If r; = 1+ c¢;11/ci + ¢;/cit1, the P; and Q; are again cubic polynomials and
p; is identified as the rational cubic interpolant version 2. Delbourgo and Gre-
gory (1985) have shown that if the derivatives satisfy the convexity/concavity
constraints NCCO or NCC1 then both rational cubic versions will be con-
cave/convex. If the derivatives satisfy the monotonicity constaints NCMO or
NCMT1 then both versions will be monotonic. Delbourgo and Gregory (1985)

have also shown that Version 2 is in general more accurate than Version 1.

The piecewise quadratic Bernstein polynomials with extra knots cannot be described
using the previous formalism. This interpolant is constructed by piecing together two
quadratic Bernstein polynomials within each interval, with the point of intersection
(the extra knot) determined by a rather complex algorithm which cannot be succinctly
described with a few equations or figures. Because of this, the reader is referred to the
descriptions found in the series of original articles (McAllister et al., 1977; McAllister
and Roulier, 1978, 1981). The characteristics of the Bernstein polynomials, together
with the algorithms developed for constructing the knot, the value of the interpolant at
the knot, and the interpolant derivative at the knot guarantee that the interpolant will

be monotonic provided NCM is satisfied, and convex/concave provided NCC is satisfied.

2.3 Derivative estimation procedures

Table 1 lists the algorithms used in estimating derivatives at the nodes. Several of the
algorithms suggested in the literature for shape preserving interpolation which differ for
unequally spaced data reduce to a common form when the data become equally spaced.
Our first comparison uses equally spaced data, and therefore common algorithms are
grouped together. The table also includes an algorithm identified as Cubic, which does
not usually appear as a derivative estimate. This scheme arises by computing a cubic
interpolant through the four nearest points. The slope at the nearest two points can
then be written as a linear combination of the four surrounding data points. Such a
scheme results in an interpolant which is only C° continuous. It is included because
this form of interpolation is often used in semi-Lagrangian problems. The harmonic
mean, geometric mean and Fritsch-Butland derivative estimates automatically satisfy
the NCM and NCC constraints. The others generally must be modified to satisfy them.
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TABLE 1.

Identifier Algorithm
Akima aAf;:LJr[;ﬁAi a+p#£0
(A70, FC80, H83) i = {(Ai_l;m) o+ B =0
=01~ A, B=1Aim1 — Ajs
Arithmetic Mean
(FC80, GD82, d; = (Bi=ithi)
DG83, H83)
Deficient Spline
Geometric Mean
(DG83) d; = {Sig“(Ai)\/m Bimi8i 20
0 A;_14; <0
Harmonic Mean N A A
(FB84) d; = {m i-18: 20
Rational Linear 0 Ai-18: <0
(GD82)
McAllister-Roulier
(MR81)
Fritsch-Butland SlAry | |A]
(FBs4, HS3) d; = {max(A,--l,A;)+zmin<Af~1,An Ai-14; 20
0 A;_1A; <0
Cubic e {(213-'—1 +5GA;—A1'+1) T € (zi,Tit1)
(—Ai—z+5éli_1+2Ai) z € (zi1,Ti)
Hyman
(H83) d; = A,-_g—7A;_112+7A,-—-A,-+1

Algorithms for derivative estimates as they simplify for evenly spaced data. Ref-
erence codes are as follows: A70-Akima (1970), DG83-Delbourgo and Gregory
(1983), FB84-Fritsch and Butland (1984), FC80-Fritsch and Carlson (1980),
GD82-Gregory and Delbourgo (1982), H83-Hyman (1983), MR81-McAllister-

Roulier (1981).

2.4 Intercomparisons of interpolation schemes
The accuracies of the interpolation schemes have been tested by applying them to three

shapes: a Gaussian, a cosine bell, and a triangle. These shapes were chosen because they
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have similar forms, but may be successively more difficult to approximate accurately.
The Gaussian is C*°, the cosine bell is ! and the triangle is C°. Tests using resolutions

of ten points and forty points were performed.

The shapes were successively displaced 100 times, by 1/100 of the grid interval, and
measurements of the accuracy were made. This was to establish the sensitivity of the
representation to the relative position of the grid and test shape. The accuracy of any
one scheme varied by at least a factor of five over the 100 realizations. We intercompared
the schemes using the accuracy averaged over all realizations. We have tabulated the
error statistics as a function of interpolation form, derivative approximation scheme and
derivative limiter in Rasch and Williamson (1987). We included the seven derivative
approximations, the five interpolation forms described above and various monotonicity
and convexity constraints on the derivatives as appropriate for the interpolation form.

We also considered the unconstrained versions for reference.

These tables of errors provide a staggering amount of information and the discussion
justifying the conclusion about the interpolation from the tables is somewhat tedious.
The tables and discussion are not repeated here. Qut of the mass of numbers considered,
there are logical inferences to be drawn relating the various schemes to each other. These
conclusions may not be universal, as definite known properties of particular fields might
be used to advantage in the interpolation scheme. Minor exceptions can be found in

our tables that might imply some other scheme is ideal for such specific applications.

We begin by itemizing our conclusions regarding the interpolating functions.

¢ The Hermite cubic and the second version of the rational cubic interpolant
appear to be the most useful interpolation formulas. The first version of the
rational cubic interpolant is consistently inferior to the second.

e The Bernstein quadratic interpolant is generally of comparable accuracy to the
rational form mentioned above. We found it to be somewhat more difficult to
program for the various special cases, which results in a corresponding increase
in the complexity of computer cpde and execution time.

¢ The rational quadratic interpolant is of comparable accuracy to the SCM limited
Hermite cubic for monotonic data, but it does not allow the flexibility of the

Hermite cubic near extrema, or allow for the concave/convex structure provided
by versions of the rational cubic interpolant. For data which have an extremum,
this scheme is not recommended, because there is no alternative to assuming
the slope goes to zero at a discrete extremum. This results in much larger errors
in the vicinity of the extremum, than the cubic, rational cubic and piecewise

quadratic spline forms.
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Conclusions regarding the derivative estimates are:

3.

The geometric mean, harmonic mean and Fritsch-Butland derivative estimates
are consistently less accurate than the others. Their virtue is their simplicity.
While they may result in visually pleasing interpolants they are generally of
insufficient accuracy for many applications. The rational-linear derivative esti-
mate, equivalent to the derivative estimate suggested by McAllister and Roulier
(1981), and the harmonic mean estimate suggested by Fritsch and Butland
(1984) for equally spaced data, is the least accurate of all the slope estimates.

The Fritsch-Butland slope is always more accurate than the rational linear slope.

The Akima approximation performs extremely well for data with small-scale
features, but less well for the broader, more rounded shapes. Careful examina-
tion of the results suggests the Akima scheme is actually quite accurate in the

vicinity of the extrema, and much less accurate over the rest of the domain.

Except for the intersection of straight lines such as triangular peaks where the
Akima estimate shines, the Hyman derivative estimate is the most accurate,
followed generally by the cubic, then arithmetic. The disadvantage of the cubic
derivative approximation is that it does not provide for a continuous interpolant
while the others do.

Monotonicity constraints generally improve the interpolation of monotonic data
and of data approaching a flat plateau. These constraints degrade the interpo-
lation near extrema by not allowing any overshoot that might be implied in the
underlying data. The derivative estimate is constrained to be zero in the vicin-
ity of extrema with the C! form. The C° continuity constraint is less serious in
this regard than the C!.

Where strict monotonicity is not required, relaxation of the monoticity condition
at any extremum seems desirable to allow the interpolant to form an extremum
somewhere other than at a data poiﬁt. Application of Hyman’s limiter for the
Hermite cubic or the convexity condition for the rational cubic seems desirable

to prevent overshooting in the approach to a flat or nearly flat plateau.

ONE-DIMENSIONAL SEMI-LAGRANGIAN ADVECTION

Based on the evaluation of the various shape-preserving interpolators described in the

previous section, we chose those which rated well for further tests in one-dimensional

semi-Lagrangian advection by a uniform wind field. The Eulerian form of the evolution

equation for the advection by a constant wind fleld of a scalar field in the absence of

sources and sinks is
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Of(z,t) f(z,t)
g Tt =0 (3.1)

where f is a scalar field such as mixing ratio, ¢ is time and v is the constant advection

velocity. Given f at time ¢, the solution at time t + At is
f(z,t + At) = f(,1) | (3.2)

Z=1x—vAt. (3.3)
The evaluation in this section focuses exclusively on the interpolation aspect of the
solution. Given the departure point £, an interpolation is made to find f (£,t). The
interpolated value is then the forecast value f (z,t+ At). We consider only the Hermite
cubic and second version of the rational cubic interpolant coupled with arithmetic, cubic,
Hyman and Akima derivative approximations. Unmodified and appropriately limited

derivative estimates are considered.

We integrate the advection equation with vAt/Axz equal to 7/12. We chose an irrational
number so that the relative position of the test field and grid would change with time
and given a long enough integration would become almost uniformly distributed over
the domain. The equation was integrated for 1000 time steps with the solution plotted
every 200. The plots are superimposed using a coordinate system that moves with the
advecting velocity. The test shapes deform due to errors in the interpolation. The line
code in the figures is such that the shorter the pattern members, the later in time the

solution.

Rasch and Williamson (1987) present results from cosine bell and square wave initial
conditions, with ten nonzero gridpoints. We select a few examples of the square wave
tests to illustrate here the general properties observed. The figures show results from

arithmetic, cubic, Hyman and Akima derivative estimates ordered top to bottom.

Figure 1 shows results from the Hermite cubic interpolant. The left column shows
~ the unlimited forms of the derivative approximations. Strong oscillations greater than
10% of the true signal are evident with the Hyman and arithmetic derivative estimate.
The cubic derivative estimate shows less over/undershoot and the Akima estimate the
least. The Akima version seems to be evolving toward a peaked shape. Figure 1 (center
column) shows results from the Hermite cubic interpolant when the derivative estimates
- are modified to satisfy the SCMO. The monotonicity condition has improved the solution
by eliminating the overshoot at the expense of increased diffusion and a decrease in the

" maximum value, at least for the arithmetic and cubic derivatiave estimates. The Hyman
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and Akima derivative versions are improved by the limiting procedure, with little or no
increase in diffusion of the shape. Imposition of the SCM1 constraints (right column)
~ results in a very substantial increase in the phase error of all versions except the cubic
~ derivative estimate. However, this interpolator is ! only where the derivative estimates

were modified.
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Fig. 1. Semi-Lagrangian advection with Hermite cubic interpolation of an initial square wave
shown every 200 time steps (superimposed using a coordinate system that moves with
the advecting velocity). The line code is such that the shorter the pattern members, the
later in time the solution (the shortest pattern occasionally bleeds into an apparent solid
line). Left column is for unlimited derivative estimates, center for estimates modified
to satisfy SCMO and right for SCM1. Top row for arthmetic mean derivative estimate,
second row for cubic, third for Hyman and bottom for Akima.

The rational cubic interpolant (Fig. 2) results in a more rounded profile for the un-
limited derivative estimates (left column) but provides a substantial reduction in the
over/undershooting and dispersion when compared to the Hermite form (Fig. 1, left
column) for the arithmetic, cubic and Hyman derivative estimates. Thus we consider
this solution to be better. On the other hand, the solution using the Akima derivative
estimate is worse with the rational than with the Hermite cubic interpolant. The C*
necessary condition for monotonicity (Fig. 2, right column) increases the diffusion of the
interpolation with the polynomial derivative estimates but leaves that with the Akima

estimate relatively unaffected. The C° version (not shown) is almost identical to the C 1
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Note that the C! monotonic rational interpolant does not show the increase in phase

error seen with the C! Hermite monotonic interpolant in Fig. 1, right column.

ARITHMETIC
MEAN

cuBiC

HYMAN

AKIMA

UNLIMITED

Fig. 2. Asin Fig. 1 except with rational cubic interpolation. Left
column is for unlimited derivative estimates and right for
estimates modified to satisfy NCM1.

4. TWO-DIMENSIONAL SEMI-LAGRANGIAN ADVECTION IN A
PLANE

We have also evaluated the Hermite and rational cubic interpolants for advection in
two-dimensional Cartesian geometry. We consider three methods of applying shape
preserving interpolation to the two-dimensional semi-Lagrangian advection problem.
The first is to split the two-dimensional advection operator into two one-dimensinal
operators via explicit fractional time steps or time-splitting. This approach was used
by Purnell (1976) following Strang (1968) to obtain a scheme which was second order

in time. Each fractional time step involves one-dimensional interpolation only.

The second method involves monotone piecewise bicubic interpolation. Carlson and
Fritsch (1985) have extended their univariate piecewise cubic interpolation (Fritsch and

Carlson, 1980) to two dimensions. Their method involves function values and the T,y
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and zy derivatives at the data points. They define a two-dimensional monotonicity con-
dition then derive conditions on the derivatives which ensure that the two-dimensional
interpolating function is a monotonic surface by their definition within the interpola-
tion rectangle. We add conditions to ensure that over the entire domain the surface is

continuous and, if desired, smooth.

The third method considered involves two-dimensional interpolation by tensor products
of one-dimensional shape preserving schemes. This pro{fides a straightforward applica-
tion of the one-dimensional interpolants considered in the previous section. However,
the shape preserving interpolants are nonlinear depending on the data themselves, and

any analysis of the characteristics of the two-dimensional surface implied is difficult.

These methods were evaluated for solid body rotation of a square block 11 points wide
centered 12 grid intervals from the axis of rotation and a cosine bell of radius seven
gridpoints centered 15 grid intervals from the center of rotation. The rotation rate was
2.5° per time step with the solution examined after two rotations (288 time steps).
Details of the tests are presented in Williamson and Rasch (1987). We illustrate the

general results with selected examples of the square block tests.

Figure 3 shows the solution for the two-dimensional Hermite cubic (method 2, upper
row) and the time-split Hermite cubic (method 1, lower row). The cubic derivative
approximation is used for both. The left side shows the unlimited forms and the right
the SCMO limited form. To economize on space we show the results on one quarter of
the domain only, centered on the exact solution. The center of rotation is at the top
of the figure. We use a contour interval of 0.1 with the 0.0 and 1.0 contours wider.
In addition, we stipple the region which contains the contours from 0.0 to 1.0 of the
exact solution, i.e., inside the stippled area the exact solution is 1.0 and outside it is 0.0.
The contour routine would spread the contour lines linearly across the stippled area.
It is immediately apparent that the time split cubic has larger errors than the Hermite
bicubic with both the monotonic and original forms. The time split form is more highly
diffused and introduces a position error by shifting the center of the feature away from
the axis of rotation. We consider these two errors serious enough to exclude the time

split approach from further consideration for two-dimensional advection.

The monotonic approach of Carlson and Fritsch (1985) in the upper right panel produces
a reasonable solution. It is properly centered but shows slightly less straight sides than
the standard bicubic on the left. Nevertheless, the monotonic form does not have the
undesirable over and undershooting. The minimal extra diffusion associated with the

monotonic form compared to the standard nonmonotonic form seems acceptable.
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Fig. 3. Two-dimensional semi-Lagrangian advection with Hermite cu-
bic interpolation of an initial square block after two rotations.
Top row for bicubic interpolation, bottom for time split fore-
cast. Left column with unmodified derivatives, right with
derivatives modified to satisfy SCMO.

Several considerations discourage us from following this constrained surface approach
further. Our ultimate goal is to apply these schemes to three-dimensional advection in
the atmosphere. Although, it seems possible to extend the Carlson and Fritsch (1985)
approach to three dimensions, the constraints on the various derivatives will be even
more complicated than the two-dimensional case. In addition, we have seen above that
other derivative approximations such as those of Akima (1970) and Hyman (1983) pro-
duce more accurate solutions than the cubic. These approximations would have to be
extended to the cross-derivatives for the multidimensional case. Yet another detriment
is that the shape preserving rational cubic interpolation, which also looks very promis-
ing in one-dimensional tests, has not been extended to multidimensional interpolation.
Therefore, we now consider the tensor product of one-dimenional monotonic interpolants
(method 3).

Figures 4-6 show the Hermite and rational cubic interpolants coupled with the cubic,
Hyman and Akima derivative approximations. Figure 4 shows the solutions when the

derivatives are unconstrained. Figure 5 shows the C° monotonic forms so that the

132



derivatives are modified to satisfy SCMO with the Hermite interpolant and NCMO with
the rational. Figure 6 shows the corresponding C' forms. These figures are discussed in
detail in Williamson and Rasch (1987) along with matching ones from the cosine bell
tests. In addition, the conservation characteristics of the solutions are also discussed

there. We present only an overview below.

T T T T T T T T T 7T T

HERMITE

RATIONAL

LN I S B A S S D N B M B S R R B O I

Fig. 4. Two-dimensional semi-Lagrangian advection of initial square block after two rotations
with tensor product interpolation forms. Top row for Hermite cubic, bottom for rational
cubic. Left column for cubic derivative approximations, center for Hyman and right for

Akima.
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Fig. 6. As Fig. 4 except derivatives modified for ¢! monotonicity, i.e., derivatives for Hermite
modified to satisfy SCM1 and those for rational, NCM1.
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Visual inspection of the solution shapes shown in Figs. 4-6 suggests that the best mono-
tonic form is the Hermite cubic with Akima derivative approximation modified to satisfy
the SCMO. Of the monotonic schemes, this combination produces minimal distortion,
sharpest gradients and least diffusion of the original nonzero region. Second best is
the rational cubic with the Hyman derivative approximation modified to satisfy NCMO
or NCM1. If C! continuity is desired this combination would be best. The C! forms
of the Hermite cubic show strong distortion of the shape due to differential phase er-
ror. If monotonicity were deemed less important than sharp gradients and straight sides
then the Hermite cubic with unmodified Akima derivative approximation would be best,
but at the expense of distortion due to differential phase error. The'Hyman derivative
approximation with either the rational or Hermite interpolants does not show such dis-
tortion at the expense of less steep gradients. The rational form has less overshoot than
the Hermite, but slightly weaker gradients. In general the results from the cosine bell

test cases agree with those from the square block.

5. SEMI-LAGRANGIAN ADVECTION ON A GAUSSIAN GRID

As mentioned in the introduction our ultimate goal is to couple semi-Lagrangian advec-
tion of scalar fields such as moisture with a global spectral transform dynamical model.
Therefore, the semi-Lagrangian scheme should be based on a Gaussian grid. Ritchie
(1987) has presented a method for semi-Lagrangian advection on a Gaussian grid. We
adopt a slightly different approach. In this section we show that no problems arise in
adapting the shape preserving interpolation schemes to spherical geometry or to the
slightly nonuniform Gaussian grid used in spectral transform models. The interpolation
in longitude (A) is on a uniform grid with periodicity assumed for boundary conditions.
The latitudinal (¢) Gaussian grid is not uniform but presents no problem as none of
the schemes we have considered assumes a uniform grid. Although we presented the
derivative approximations in Table 1 for a uniform grid they are easily extendable to
nonuniform grids. Near the poles we must be a little careful. Boundary conditions at
the poles are implemented by defining gridpoints across the pole, which are needed for
the interpolation operators. These points are simply provided by the gridpoints at the
appropriate latitude 7 radians from the longitude of interest (1), i.e.,

Y (Ai, i ai) = £ <>\i + g - ai) | (5.1)

2
where the latitudes near the pole are rewritten ¢; = (7/2) —¢e;. The sign in (5.1) is taken
to be positive for scalar fields and negative for vector components. In addition we define
a pole point (\;,7/2) or row of pole points, not normally part of the Gaussian grid, so

that in the limit as interpolation points approach the pole, the interpolated values satisfy
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certain physical continuity conditions. These are that the pole be a constant for a scalar
field or consist of wavenumber one only for vector components. The pole row is defined
by interpolating the zonal average or wavenumber one component, as appropriate, from
the adjacent rows. The same interpolation scheme is used to obtain this pole point as

is used in the interpolation of the field itself.

With the extensions described above, all the schemes considered in the plane case have
been examined in spherical geometry with the test case of solid body rotation of a cosine
bell. We have considered geometries in which the axis of rotation is not coincident with
the polar axis of the spherical coordinate system. In general the relative properties of
the schemes are not affected by the spherical geometry. The results from advecting the

cosine bell on the sphere agree with those from the cosine bell on the plane.

We present only two examples here to illustrate that the pole does not present a problem
(Fig. 7). They are based on a 64x128 Gaussian grid normally used with T42 spectral
resolution. The test shape is a cosine bell of amplitude 1 and radius 7 (27)/128 radians
centered initially on the equator. We consider solid body rotation over the pole at a
rate of (w/64)/2 radians per time step. The figures present contours of the solution
on an orthographic projection with the perspective centered over the center of the true
solution, thus the true solution is always in the center of the figure. Our convention is
that the test shape is moving toward the top of the figure. The contour interval is 0.1
with 0.0 and 1.0 contours wider. (No 0.0 or 1.0 contours appear on the figures shown
here.) The region contained between the 0.1 and 0.9 contours of the true solution is

stippled for reference.

The left side of Fig. 7 shows the solution after one complete rotation (256 time steps)
from the Hermite cubic interpolant with the Akima derivative estimates modified to
satisfy the SCMO. The right side shows that from the rational cubic interpolant with
the Hyman derivative estimates modified to satisfy the NCM1. Both tend to elongate
the circular structure. The Hermite/Akima combination produces a slightly smaller size

than the rational/Hyman accompanied by stronger gradients.
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HERMITE 7/ AKIMA /SCMO RATIONAL /HYMAN/NCMI

Fig. 7 Solid body rotation of cosine bell after one complete rotation (256 time steps) across
both poles. Left side is for Hermite cubic with Akima derivative estimates modified to
satisfy SCMO. Right side is for rational cubic with Hyman derivative estimates modified
to satisfy NCM1.

6. DEPARTURE POINT CALCULATION IN SPHERICAL
GEOMETRY
As stated earlier in Section 3, the advection equation for a scalar field like mixing ratio
q is just
dq _
— =0 . 6.1
7t (6.1)

In spherical coordinates the semi-Lagrangian form is

g(Aa,d4,t + At) = ¢(Ap, oD, 1) (6.2)

where subscript A denotes the arrival point and D the departure point, i.e., the parcel
travels from (Ap,#p) at time ¢ to (Aa,¢4) at time ¢ + At. The arrival points (A4, b4a)
are chosen to be the Gaussian gridpoints and we must estimate the points (Ap,#p)
from which the parcels departed at time ¢ in order to reach the Gaussian gridpoints at
time ¢ + At.

The relationship between departure and arrival points is

(Aa,da,t+Ad)
AD + / u(A,qS,t) dt = )‘A (6.3)
(AD,¢’D)t)

137



(Aa,pa,t+AL)
¢D+/ v(A, 1) dt = g4 (6.4)
()‘D y¢D 1t)

in which the integrals are taken along the trajectory of the parcels and must be ap-
proximated by discrete values. We anticipate making the moisture forecast after the

momentum forecast, thus we can approximate (6.3) and (6.4) by

Ap = As — %At [w(ha, bart + A) + u(Apy dp,£)] (6.5)

b0 = 4~ 3At0(A,ba,0+ A1) +0(Ap, bp,1)] , (6.6)

These are implicit equations for (Ap,#p) since they involve v and v at the unknown
point, and are solved by iteration starting with some first guess for (Ap,¢p). The

velocity components at (Ap,@p) are obtained by iterating.

. ,

N = Aa = AL [u00s, st + AY) + (M, 5,0)] (6.7)
1

’B+1 - ¢A - —2—At [U(AA7 ¢A7t + At) + U(Allc)aqsllc))t)] (68)

We anticipate serious inaccuracies in the vicinity of the poles with (6.7) and (6.8). Near
the poles, the velocity components undergo rapid variation over short distances and thus
the approximation that the velocity along the trajectory be represented by one or two
values breaks down. To avoid this problem we transform to a local geodesic coordinate at
each arrival point before calculating the departure point. This local geodesic coordinate
denoted (), ¢') is essentially a rotated spherical coordinate system whose equator goes
through the arrival point. The rotated system is chosen so that the arrival point in
the transformed system ()’,,¢’,) is (0,0). In addition, the velocity components are the
same there, i.e., u'(A,,¢) = u(As,04) and v'(N,,4",) = v(ra,d4). Details of the
transformations involved are included in Williamson and Rasch (1987). In that paper
we compare four approaches to estimating the departure point. All are iterative and
require a first guess for the departure point (Ap,#p), which we took for the tests to be
the arrival point (A4, $4). We compared the error in the four methods for the case of
solid body rotation across the pole and for a small asymmetric polar vortex whose wind
maximum crosses the pole. This is a more difficult test than the solid body rotation
because there is large flow (trajectory) curvature in the region of strong winds. We
calculate the true departure point analytically for these cases to establish the error in

the approximations. The four methods considered are
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Global Spherical: The first scheme involves global spherical coordinates only and con-
sists of iterating the following steps.

1) Interpolate for u (A’f),d)’f),t) and v (A'fJ, ¢>’B,t)
(Ag”, ’BH,) via (6.7 and 6.8)

This is the scheme we expect to have serious errors near the poles.

2) Calculate next estimate of

Local Geodesic: The second scheme uses local geodesic coordinates for the departure
point calculation and local geodesic velocity components for the interpolation. The
interpolation itself, however, is done in the global spherical coordinate system in which
the data grid is separable and the tensor product form applies.

1) Transform spherical components u ‘and v to local geodesic components u’ and
v’ at all points needed for the interpolation

2) Interpolate for u/(\%, ¢%,t) and o' (N, 0%, 1)

3) Calculate (MfF1,¢/5%1) in the local geodesic coordinate system via (6.7) and
(6.8) with all variables except ¢ replaced with the primed (i.e., local geodesic)
versions

4) Transform local geodesic (\EH 'k+1) to global spherical (A&, kL

Mixed Spherical-Geodesic: The local geodesic scheme described above requires the
transformation of all velocity components used in the interpolation. Since there is a
different transformation associated with each arrival point, this requires many trans-
formations. It may be adequate to interpolate the original spherical components and
just use the local geodesic coordinate for the approximation of the integral along the
trajectory only. Such a scheme is

1) Interpolate for u(\%), $%,t) and v(Ak, 9k 1)

2) Transform spherical components u(Ak, ¢k ,t) and v(A\E, #% ,t) to local geodesic

components u/(A%, #%,t) and v (A%, 0%, 1);
3) Calculate (AEH1, ’5+1) as in the local geodesic scheme
4) Transform local geodesic (/\'g“, 'g“) to global spherical (A’f;’l, ’Z;’l)

Cartesian: The last method is that proposed by Ritchie (1987). It is most like our mixed
scheme, but instead of using a local geodesic coordinate, Ritchie uses a three-dimensional
Cartesian system to calculate the departure point. Thus step (2) of the mixed scheme
is replaced by a transformation to Cartesian components, step (3) by an approximation
in Cartesian space and (4) by a transformation from Cartesian coordinates back to

spherical.

We anticipate applying these methods to winds obtained from a global spectral trans-

form model, and therefore do not consider monotonicity to be critical for the interpola-

139




tion of the wind field. Therefore, we have considered bilinear, biquadratic and bicubic
interpolation only. Details of the errors are presented in Williamson and Rasch (1987).

We summarize the results here.

As expected, the global spherical method has serious errors near the poles and should
not be used. The local geodesic, mixed, and Cartesian are basically equally good. The
local geodesic is better than the mixed and Cartesian only with linear interpolation
coupled with advection over a short distance (small At). Cubic interpolation is better
than quadratic with the asymmetric polar vortex but they are equally good for solid
body rotation over the pole. The linear interpolation has significant maximum errors
(20% of latitudinal grid interval) near the pole with the asymetric polar vortex, while
the quadratic and cubic seem reasonable (9% and 6%, respectively). The expense of
the extra transformations involved in the local geodesic method is not worthwhile. The

mixed and Cartesian (Ritchie) methods are equally viable.

7. COMMENTS

Semi-Lagrangian transport coupled with shape-preserving interpolation appears to be a
promising replacement for moisture transport in global spectral transform atmospheric
models. We are currently incorporating the approach in the NCAR Community Climate
Model and the NMC global forecast model. We will evaluate it for the most promising
interpolation forms and derivative approximations both in very long simulation runs

and in the forecast-analysis cycle and medium-range forecasts.
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